Spaces:
Runtime error
Runtime error
File size: 15,601 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The COCO-style evaluator.
The following snippet demonstrates the use of interfaces:
evaluator = COCOEvaluator(...)
for _ in range(num_evals):
for _ in range(num_batches_per_eval):
predictions, groundtruth = predictor.predict(...) # pop a batch.
evaluator.update_state(groundtruths, predictions)
evaluator.result() # finish one full eval and reset states.
See also: https://github.com/cocodataset/cocoapi/
"""
import atexit
import tempfile
# Import libraries
from absl import logging
import numpy as np
from pycocotools import cocoeval
import six
import tensorflow as tf, tf_keras
from official.vision.evaluation import coco_utils
class COCOEvaluator(object):
"""COCO evaluation metric class."""
def __init__(self,
annotation_file,
include_mask,
include_keypoint=False,
need_rescale_bboxes=True,
need_rescale_keypoints=False,
per_category_metrics=False,
max_num_eval_detections=100,
kpt_oks_sigmas=None):
"""Constructs COCO evaluation class.
The class provides the interface to COCO metrics_fn. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the ground-truths and runs COCO evaluation.
Args:
annotation_file: a JSON file that stores annotations of the eval dataset.
If `annotation_file` is None, ground-truth annotations will be loaded
from the dataloader.
include_mask: a boolean to indicate whether or not to include the mask
eval.
include_keypoint: a boolean to indicate whether or not to include the
keypoint eval.
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
to absolute values (`image_info` is needed in this case).
need_rescale_keypoints: If true keypoints in `predictions` will be
rescaled back to absolute values (`image_info` is needed in this case).
per_category_metrics: Whether to return per category metrics.
max_num_eval_detections: Maximum number of detections to evaluate in coco
eval api. Default at 100.
kpt_oks_sigmas: The sigmas used to calculate keypoint OKS. See
http://cocodataset.org/#keypoints-eval. When None, it will use the
defaults in COCO.
Raises:
ValueError: if max_num_eval_detections is not an integer.
"""
if annotation_file:
if annotation_file.startswith('gs://'):
_, local_val_json = tempfile.mkstemp(suffix='.json')
tf.io.gfile.remove(local_val_json)
tf.io.gfile.copy(annotation_file, local_val_json)
atexit.register(tf.io.gfile.remove, local_val_json)
else:
local_val_json = annotation_file
self._coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if include_mask else 'box'),
annotation_file=local_val_json)
self._annotation_file = annotation_file
self._include_mask = include_mask
self._include_keypoint = include_keypoint
self._per_category_metrics = per_category_metrics
if max_num_eval_detections is None or not isinstance(
max_num_eval_detections, int):
raise ValueError('max_num_eval_detections must be an integer.')
self._metric_names = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10',
f'ARmax{max_num_eval_detections}', 'ARs', 'ARm', 'ARl'
]
self.max_num_eval_detections = max_num_eval_detections
self._required_prediction_fields = [
'source_id', 'num_detections', 'detection_classes', 'detection_scores',
'detection_boxes'
]
self._need_rescale_bboxes = need_rescale_bboxes
self._need_rescale_keypoints = need_rescale_keypoints
if self._need_rescale_bboxes or self._need_rescale_keypoints:
self._required_prediction_fields.append('image_info')
self._required_groundtruth_fields = [
'source_id', 'height', 'width', 'classes', 'boxes'
]
if self._include_mask:
mask_metric_names = ['mask_' + x for x in self._metric_names]
self._metric_names.extend(mask_metric_names)
self._required_prediction_fields.extend(['detection_masks'])
self._required_groundtruth_fields.extend(['masks'])
if self._include_keypoint:
keypoint_metric_names = [
'AP', 'AP50', 'AP75', 'APm', 'APl', 'ARmax1', 'ARmax10',
f'ARmax{max_num_eval_detections}', 'ARm', 'ARl'
]
keypoint_metric_names = ['keypoint_' + x for x in keypoint_metric_names]
self._metric_names.extend(keypoint_metric_names)
self._required_prediction_fields.extend(['detection_keypoints'])
self._required_groundtruth_fields.extend(['keypoints'])
self._kpt_oks_sigmas = kpt_oks_sigmas
self.reset_states()
@property
def name(self):
return 'coco_metric'
def reset_states(self):
"""Resets internal states for a fresh run."""
self._predictions = {}
if not self._annotation_file:
self._groundtruths = {}
def result(self):
"""Evaluates detection results, and reset_states."""
metric_dict = self.evaluate()
# Cleans up the internal variables in order for a fresh eval next time.
self.reset_states()
return metric_dict
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
logging.info('There is no annotation_file in COCOEvaluator.')
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
logging.info('Using annotation file: %s', self._annotation_file)
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
coco_eval.params.imgIds = image_ids
coco_eval.params.maxDets[2] = self.max_num_eval_detections
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
metrics = coco_metrics
if self._include_mask:
mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
mcoco_eval.params.imgIds = image_ids
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
mask_coco_metrics = mcoco_eval.stats
metrics = np.hstack((metrics, mask_coco_metrics))
if self._include_keypoint:
kcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='keypoints',
kpt_oks_sigmas=self._kpt_oks_sigmas)
kcoco_eval.params.imgIds = image_ids
kcoco_eval.evaluate()
kcoco_eval.accumulate()
kcoco_eval.summarize()
keypoint_coco_metrics = kcoco_eval.stats
metrics = np.hstack((metrics, keypoint_coco_metrics))
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
# Adds metrics per category.
if self._per_category_metrics:
metrics_dict.update(self._retrieve_per_category_metrics(coco_eval))
if self._include_mask:
metrics_dict.update(self._retrieve_per_category_metrics(
mcoco_eval, prefix='mask'))
if self._include_keypoint:
metrics_dict.update(self._retrieve_per_category_metrics(
mcoco_eval, prefix='keypoints'))
return metrics_dict
def _retrieve_per_category_metrics(self, coco_eval, prefix=''):
"""Retrieves and per-category metrics and retuns them in a dict.
Args:
coco_eval: a cocoeval.COCOeval object containing evaluation data.
prefix: str, A string used to prefix metric names.
Returns:
metrics_dict: A dictionary with per category metrics.
"""
metrics_dict = {}
if prefix:
prefix = prefix + ' '
if hasattr(coco_eval, 'category_stats'):
for category_index, category_id in enumerate(coco_eval.params.catIds):
if self._annotation_file:
coco_category = self._coco_gt.cats[category_id]
# if 'name' is available use it, otherwise use `id`
category_display_name = coco_category.get('name', category_id)
else:
category_display_name = category_id
if 'keypoints' in prefix:
metrics_dict_keys = [
'Precision mAP ByCategory',
'Precision mAP ByCategory@50IoU',
'Precision mAP ByCategory@75IoU',
'Precision mAP ByCategory (medium)',
'Precision mAP ByCategory (large)',
'Recall AR@1 ByCategory',
'Recall AR@10 ByCategory',
'Recall AR@100 ByCategory',
'Recall AR (medium) ByCategory',
'Recall AR (large) ByCategory',
]
else:
metrics_dict_keys = [
'Precision mAP ByCategory',
'Precision mAP ByCategory@50IoU',
'Precision mAP ByCategory@75IoU',
'Precision mAP ByCategory (small)',
'Precision mAP ByCategory (medium)',
'Precision mAP ByCategory (large)',
'Recall AR@1 ByCategory',
'Recall AR@10 ByCategory',
'Recall AR@100 ByCategory',
'Recall AR (small) ByCategory',
'Recall AR (medium) ByCategory',
'Recall AR (large) ByCategory',
]
for idx, key in enumerate(metrics_dict_keys):
metrics_dict[prefix + key + '/{}'.format(
category_display_name)] = coco_eval.category_stats[idx][
category_index].astype(np.float32)
return metrics_dict
def _process_bbox_predictions(self, predictions):
image_scale = np.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2))
predictions['detection_boxes'] = (
predictions['detection_boxes'].astype(np.float32))
predictions['detection_boxes'] /= image_scale
if 'detection_outer_boxes' in predictions:
predictions['detection_outer_boxes'] = (
predictions['detection_outer_boxes'].astype(np.float32))
predictions['detection_outer_boxes'] /= image_scale
def _process_keypoints_predictions(self, predictions):
image_scale = tf.reshape(predictions['image_info'][:, 2:3, :],
[-1, 1, 1, 2])
predictions['detection_keypoints'] = (
predictions['detection_keypoints'].astype(np.float32))
predictions['detection_keypoints'] /= image_scale
def _convert_to_numpy(self, groundtruths, predictions):
"""Converts tesnors to numpy arrays."""
if groundtruths:
labels = tf.nest.map_structure(lambda x: x.numpy(), groundtruths)
numpy_groundtruths = {}
for key, val in labels.items():
if isinstance(val, tuple):
val = np.concatenate(val)
numpy_groundtruths[key] = val
else:
numpy_groundtruths = groundtruths
if predictions:
outputs = tf.nest.map_structure(lambda x: x.numpy(), predictions)
numpy_predictions = {}
for key, val in outputs.items():
if isinstance(val, tuple):
val = np.concatenate(val)
numpy_predictions[key] = val
else:
numpy_predictions = predictions
return numpy_groundtruths, numpy_predictions
def update_state(self, groundtruths, predictions):
"""Update and aggregate detection results and ground-truth data.
Args:
groundtruths: a dictionary of Tensors including the fields below.
See also different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- height: a numpy array of int of shape [batch_size].
- width: a numpy array of int of shape [batch_size].
- num_detections: a numpy array of int of shape [batch_size].
- boxes: a numpy array of float of shape [batch_size, K, 4].
- classes: a numpy array of int of shape [batch_size, K].
Optional fields:
- is_crowds: a numpy array of int of shape [batch_size, K]. If the
field is absent, it is assumed that this instance is not crowd.
- areas: a numy array of float of shape [batch_size, K]. If the
field is absent, the area is calculated using either boxes or
masks depending on which one is available.
- masks: a numpy array of float of shape
[batch_size, K, mask_height, mask_width],
predictions: a dictionary of tensors including the fields below.
See different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- image_info [if `need_rescale_bboxes` is True]: a numpy array of
float of shape [batch_size, 4, 2].
- num_detections: a numpy array of
int of shape [batch_size].
- detection_boxes: a numpy array of float of shape [batch_size, K, 4].
- detection_classes: a numpy array of int of shape [batch_size, K].
- detection_scores: a numpy array of float of shape [batch_size, K].
Optional fields:
- detection_masks: a numpy array of float of shape
[batch_size, K, mask_height, mask_width].
Raises:
ValueError: if the required prediction or ground-truth fields are not
present in the incoming `predictions` or `groundtruths`.
"""
groundtruths, predictions = self._convert_to_numpy(groundtruths,
predictions)
for k in self._required_prediction_fields:
if k not in predictions:
raise ValueError(
'Missing the required key `{}` in predictions!'.format(k))
if self._need_rescale_bboxes:
self._process_bbox_predictions(predictions)
if self._need_rescale_keypoints:
self._process_keypoints_predictions(predictions)
for k, v in six.iteritems(predictions):
if k not in self._predictions:
self._predictions[k] = [v]
else:
self._predictions[k].append(v)
if not self._annotation_file:
assert groundtruths
for k in self._required_groundtruth_fields:
if k not in groundtruths:
raise ValueError(
'Missing the required key `{}` in groundtruths!'.format(k))
for k, v in six.iteritems(groundtruths):
if k not in self._groundtruths:
self._groundtruths[k] = [v]
else:
self._groundtruths[k].append(v)
|