Spaces:
Runtime error
Runtime error
File size: 17,880 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Util functions related to pycocotools and COCO eval."""
import copy
import json
# Import libraries
from absl import logging
import numpy as np
from PIL import Image
from pycocotools import coco
from pycocotools import mask as mask_api
import six
import tensorflow as tf, tf_keras
from official.common import dataset_fn
from official.vision.dataloaders import tf_example_decoder
from official.vision.ops import box_ops
from official.vision.ops import mask_ops
class COCOWrapper(coco.COCO):
"""COCO wrapper class.
This class wraps COCO API object, which provides the following additional
functionalities:
1. Support string type image id.
2. Support loading the ground-truth dataset using the external annotation
dictionary.
3. Support loading the prediction results using the external annotation
dictionary.
"""
def __init__(self, eval_type='box', annotation_file=None, gt_dataset=None):
"""Instantiates a COCO-style API object.
Args:
eval_type: either 'box' or 'mask'.
annotation_file: a JSON file that stores annotations of the eval dataset.
This is required if `gt_dataset` is not provided.
gt_dataset: the ground-truth eval datatset in COCO API format.
"""
if ((annotation_file and gt_dataset) or
((not annotation_file) and (not gt_dataset))):
raise ValueError('One and only one of `annotation_file` and `gt_dataset` '
'needs to be specified.')
if eval_type not in ['box', 'mask']:
raise ValueError('The `eval_type` can only be either `box` or `mask`.')
coco.COCO.__init__(self, annotation_file=annotation_file)
self._eval_type = eval_type
if gt_dataset:
self.dataset = gt_dataset
self.createIndex()
def loadRes(self, predictions):
"""Loads result file and return a result api object.
Args:
predictions: a list of dictionary each representing an annotation in COCO
format. The required fields are `image_id`, `category_id`, `score`,
`bbox`, `segmentation`.
Returns:
res: result COCO api object.
Raises:
ValueError: if the set of image id from predctions is not the subset of
the set of image id of the ground-truth dataset.
"""
res = coco.COCO()
res.dataset['images'] = copy.deepcopy(self.dataset['images'])
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
image_ids = [ann['image_id'] for ann in predictions]
if set(image_ids) != (set(image_ids) & set(self.getImgIds())):
raise ValueError('Results do not correspond to the current dataset!')
for ann in predictions:
x1, x2, y1, y2 = [ann['bbox'][0], ann['bbox'][0] + ann['bbox'][2],
ann['bbox'][1], ann['bbox'][1] + ann['bbox'][3]]
if self._eval_type == 'box':
ann['area'] = ann['bbox'][2] * ann['bbox'][3]
ann['segmentation'] = [
[x1, y1, x1, y2, x2, y2, x2, y1]]
elif self._eval_type == 'mask':
ann['area'] = mask_api.area(ann['segmentation'])
res.dataset['annotations'] = copy.deepcopy(predictions)
res.createIndex()
return res
def convert_predictions_to_coco_annotations(predictions):
"""Converts a batch of predictions to annotations in COCO format.
Args:
predictions: a dictionary of lists of numpy arrays including the following
fields. 'K' below denotes the maximum number of instances per image.
Required fields:
- source_id: a list of numpy arrays of int or string of shape
[batch_size].
- detection_boxes: a list of numpy arrays of float of shape
[batch_size, K, 4], where coordinates are in the original image
space (not the scaled image space).
- detection_classes: a list of numpy arrays of int of shape
[batch_size, K].
- detection_scores: a list of numpy arrays of float of shape
[batch_size, K].
Optional fields:
- detection_masks: a list of numpy arrays of float of shape
[batch_size, K, mask_height, mask_width].
- detection_keypoints: a list of numpy arrays of float of shape
[batch_size, K, num_keypoints, 2]
Returns:
coco_predictions: prediction in COCO annotation format.
"""
coco_predictions = []
num_batches = len(predictions['source_id'])
max_num_detections = predictions['detection_classes'][0].shape[1]
use_outer_box = 'detection_outer_boxes' in predictions
for i in range(num_batches):
predictions['detection_boxes'][i] = box_ops.yxyx_to_xywh(
predictions['detection_boxes'][i])
if use_outer_box:
predictions['detection_outer_boxes'][i] = box_ops.yxyx_to_xywh(
predictions['detection_outer_boxes'][i])
mask_boxes = predictions['detection_outer_boxes']
else:
mask_boxes = predictions['detection_boxes']
batch_size = predictions['source_id'][i].shape[0]
if 'detection_keypoints' in predictions:
# Adds extra ones to indicate the visibility for each keypoint as is
# recommended by MSCOCO. Also, convert keypoint from [y, x] to [x, y]
# as mandated by COCO.
num_keypoints = predictions['detection_keypoints'][i].shape[2]
coco_keypoints = np.concatenate(
[
predictions['detection_keypoints'][i][..., 1:],
predictions['detection_keypoints'][i][..., :1],
np.ones([batch_size, max_num_detections, num_keypoints, 1]),
],
axis=-1,
).astype(int)
for j in range(batch_size):
if 'detection_masks' in predictions:
image_masks = mask_ops.paste_instance_masks(
predictions['detection_masks'][i][j],
mask_boxes[i][j],
int(predictions['image_info'][i][j, 0, 0]),
int(predictions['image_info'][i][j, 0, 1]),
)
binary_masks = (image_masks > 0.0).astype(np.uint8)
encoded_masks = [
mask_api.encode(np.asfortranarray(binary_mask))
for binary_mask in list(binary_masks)
]
for k in range(max_num_detections):
ann = {}
ann['image_id'] = predictions['source_id'][i][j]
ann['category_id'] = predictions['detection_classes'][i][j, k]
ann['bbox'] = predictions['detection_boxes'][i][j, k]
ann['score'] = predictions['detection_scores'][i][j, k]
if 'detection_masks' in predictions:
ann['segmentation'] = encoded_masks[k]
if 'detection_keypoints' in predictions:
ann['keypoints'] = coco_keypoints[j, k].flatten().tolist()
coco_predictions.append(ann)
for i, ann in enumerate(coco_predictions):
ann['id'] = i + 1
return coco_predictions
def convert_groundtruths_to_coco_dataset(groundtruths, label_map=None):
"""Converts ground-truths to the dataset in COCO format.
Args:
groundtruths: a dictionary of numpy arrays including the fields below.
Note that each element in the list represent the number for a single
example without batch dimension. 'K' below denotes the actual number of
instances for each image.
Required fields:
- source_id: a list of numpy arrays of int or string of shape
[batch_size].
- height: a list of numpy arrays of int of shape [batch_size].
- width: a list of numpy arrays of int of shape [batch_size].
- num_detections: a list of numpy arrays of int of shape [batch_size].
- boxes: a list of numpy arrays of float of shape [batch_size, K, 4],
where coordinates are in the original image space (not the
normalized coordinates).
- classes: a list of numpy arrays of int of shape [batch_size, K].
Optional fields:
- is_crowds: a list of numpy arrays of int of shape [batch_size, K]. If
th field is absent, it is assumed that this instance is not crowd.
- areas: a list of numy arrays of float of shape [batch_size, K]. If the
field is absent, the area is calculated using either boxes or
masks depending on which one is available.
- masks: a list of numpy arrays of string of shape [batch_size, K],
label_map: (optional) a dictionary that defines items from the category id
to the category name. If `None`, collect the category mapping from the
`groundtruths`.
Returns:
coco_groundtruths: the ground-truth dataset in COCO format.
"""
source_ids = np.concatenate(groundtruths['source_id'], axis=0)
heights = np.concatenate(groundtruths['height'], axis=0)
widths = np.concatenate(groundtruths['width'], axis=0)
gt_images = [{'id': int(i), 'height': int(h), 'width': int(w)} for i, h, w
in zip(source_ids, heights, widths)]
gt_annotations = []
num_batches = len(groundtruths['source_id'])
for i in range(num_batches):
logging.log_every_n(
logging.INFO,
'convert_groundtruths_to_coco_dataset: Processing annotation %d', 100,
i)
max_num_instances = groundtruths['classes'][i].shape[1]
batch_size = groundtruths['source_id'][i].shape[0]
for j in range(batch_size):
num_instances = groundtruths['num_detections'][i][j]
if num_instances > max_num_instances:
logging.warning(
'num_groundtruths is larger than max_num_instances, %d v.s. %d',
num_instances, max_num_instances)
num_instances = max_num_instances
for k in range(int(num_instances)):
ann = {}
ann['image_id'] = int(groundtruths['source_id'][i][j])
if 'is_crowds' in groundtruths:
ann['iscrowd'] = int(groundtruths['is_crowds'][i][j, k])
else:
ann['iscrowd'] = 0
ann['category_id'] = int(groundtruths['classes'][i][j, k])
boxes = groundtruths['boxes'][i]
ann['bbox'] = [
float(boxes[j, k, 1]),
float(boxes[j, k, 0]),
float(boxes[j, k, 3] - boxes[j, k, 1]),
float(boxes[j, k, 2] - boxes[j, k, 0])]
if 'areas' in groundtruths:
ann['area'] = float(groundtruths['areas'][i][j, k])
else:
ann['area'] = float(
(boxes[j, k, 3] - boxes[j, k, 1]) *
(boxes[j, k, 2] - boxes[j, k, 0]))
if 'masks' in groundtruths:
if isinstance(groundtruths['masks'][i][j, k], tf.Tensor):
mask = Image.open(
six.BytesIO(groundtruths['masks'][i][j, k].numpy()))
else:
mask = Image.open(
six.BytesIO(groundtruths['masks'][i][j, k]))
np_mask = np.array(mask, dtype=np.uint8)
np_mask[np_mask > 0] = 255
encoded_mask = mask_api.encode(np.asfortranarray(np_mask))
ann['segmentation'] = encoded_mask
# Ensure the content of `counts` is JSON serializable string.
if 'counts' in ann['segmentation']:
ann['segmentation']['counts'] = six.ensure_str(
ann['segmentation']['counts'])
if 'areas' not in groundtruths:
ann['area'] = mask_api.area(encoded_mask)
if 'keypoints' in groundtruths:
keypoints = groundtruths['keypoints'][i]
coco_keypoints = []
num_valid_keypoints = 0
for z in range(len(keypoints[j, k, :, 1])):
# Convert from [y, x] to [x, y] as mandated by COCO.
x = float(keypoints[j, k, z, 1])
y = float(keypoints[j, k, z, 0])
coco_keypoints.append(x)
coco_keypoints.append(y)
if tf.math.is_nan(x) or tf.math.is_nan(y) or (
x == 0 and y == 0):
visibility = 0
else:
visibility = 2
num_valid_keypoints = num_valid_keypoints + 1
coco_keypoints.append(visibility)
ann['keypoints'] = coco_keypoints
ann['num_keypoints'] = num_valid_keypoints
gt_annotations.append(ann)
for i, ann in enumerate(gt_annotations):
ann['id'] = i + 1
if label_map:
gt_categories = [{'id': i, 'name': label_map[i]} for i in label_map]
else:
category_ids = [gt['category_id'] for gt in gt_annotations]
gt_categories = [{'id': i} for i in set(category_ids)]
gt_dataset = {
'images': gt_images,
'categories': gt_categories,
'annotations': copy.deepcopy(gt_annotations),
}
return gt_dataset
class COCOGroundtruthGenerator:
"""Generates the ground-truth annotations from a single example."""
def __init__(self, file_pattern, file_type, num_examples, include_mask,
regenerate_source_id=False):
self._file_pattern = file_pattern
self._num_examples = num_examples
self._include_mask = include_mask
self._dataset_fn = dataset_fn.pick_dataset_fn(file_type)
self._regenerate_source_id = regenerate_source_id
def _parse_single_example(self, example):
"""Parses a single serialized tf.Example proto.
Args:
example: a serialized tf.Example proto string.
Returns:
A dictionary of ground-truth with the following fields:
source_id: a scalar tensor of int64 representing the image source_id.
height: a scalar tensor of int64 representing the image height.
width: a scalar tensor of int64 representing the image width.
boxes: a float tensor of shape [K, 4], representing the ground-truth
boxes in absolute coordinates with respect to the original image size.
classes: a int64 tensor of shape [K], representing the class labels of
each instances.
is_crowds: a bool tensor of shape [K], indicating whether the instance
is crowd.
areas: a float tensor of shape [K], indicating the area of each
instance.
masks: a string tensor of shape [K], containing the bytes of the png
mask of each instance.
"""
decoder = tf_example_decoder.TfExampleDecoder(
include_mask=self._include_mask,
regenerate_source_id=self._regenerate_source_id)
decoded_tensors = decoder.decode(example)
image = decoded_tensors['image']
image_size = tf.shape(image)[0:2]
boxes = box_ops.denormalize_boxes(
decoded_tensors['groundtruth_boxes'], image_size)
source_id = decoded_tensors['source_id']
if source_id.dtype is tf.string:
source_id = tf.strings.to_number(source_id, out_type=tf.int64)
groundtruths = {
'source_id': source_id,
'height': decoded_tensors['height'],
'width': decoded_tensors['width'],
'num_detections': tf.shape(decoded_tensors['groundtruth_classes'])[0],
'boxes': boxes,
'classes': decoded_tensors['groundtruth_classes'],
'is_crowds': decoded_tensors['groundtruth_is_crowd'],
'areas': decoded_tensors['groundtruth_area'],
}
if self._include_mask:
groundtruths.update({
'masks': decoded_tensors['groundtruth_instance_masks_png'],
})
return groundtruths
def _build_pipeline(self):
"""Builds data pipeline to generate ground-truth annotations."""
dataset = tf.data.Dataset.list_files(self._file_pattern, shuffle=False)
dataset = dataset.interleave(
map_func=lambda filename: self._dataset_fn(filename).prefetch(1),
cycle_length=None,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.take(self._num_examples)
dataset = dataset.map(self._parse_single_example,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(1, drop_remainder=False)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def __call__(self):
return self._build_pipeline()
def scan_and_generator_annotation_file(file_pattern: str,
file_type: str,
num_samples: int,
include_mask: bool,
annotation_file: str,
regenerate_source_id: bool = False):
"""Scans and generate the COCO-style annotation JSON file given a dataset."""
groundtruth_generator = COCOGroundtruthGenerator(
file_pattern, file_type, num_samples, include_mask, regenerate_source_id)
generate_annotation_file(groundtruth_generator, annotation_file)
def generate_annotation_file(groundtruth_generator,
annotation_file):
"""Generates COCO-style annotation JSON file given a ground-truth generator."""
groundtruths = {}
logging.info('Loading groundtruth annotations from dataset to memory...')
for i, groundtruth in enumerate(groundtruth_generator()):
logging.log_every_n(logging.INFO,
'generate_annotation_file: Processing annotation %d',
100, i)
for k, v in six.iteritems(groundtruth):
if k not in groundtruths:
groundtruths[k] = [v]
else:
groundtruths[k].append(v)
gt_dataset = convert_groundtruths_to_coco_dataset(groundtruths)
logging.info('Saving groundtruth annotations to the JSON file...')
with tf.io.gfile.GFile(annotation_file, 'w') as f:
f.write(json.dumps(gt_dataset))
logging.info('Done saving the JSON file...')
|