File size: 17,880 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Util functions related to pycocotools and COCO eval."""

import copy
import json

# Import libraries

from absl import logging
import numpy as np
from PIL import Image
from pycocotools import coco
from pycocotools import mask as mask_api
import six
import tensorflow as tf, tf_keras

from official.common import dataset_fn
from official.vision.dataloaders import tf_example_decoder
from official.vision.ops import box_ops
from official.vision.ops import mask_ops


class COCOWrapper(coco.COCO):
  """COCO wrapper class.

  This class wraps COCO API object, which provides the following additional
  functionalities:
    1. Support string type image id.
    2. Support loading the ground-truth dataset using the external annotation
       dictionary.
    3. Support loading the prediction results using the external annotation
       dictionary.
  """

  def __init__(self, eval_type='box', annotation_file=None, gt_dataset=None):
    """Instantiates a COCO-style API object.

    Args:
      eval_type: either 'box' or 'mask'.
      annotation_file: a JSON file that stores annotations of the eval dataset.
        This is required if `gt_dataset` is not provided.
      gt_dataset: the ground-truth eval datatset in COCO API format.
    """
    if ((annotation_file and gt_dataset) or
        ((not annotation_file) and (not gt_dataset))):
      raise ValueError('One and only one of `annotation_file` and `gt_dataset` '
                       'needs to be specified.')

    if eval_type not in ['box', 'mask']:
      raise ValueError('The `eval_type` can only be either `box` or `mask`.')

    coco.COCO.__init__(self, annotation_file=annotation_file)
    self._eval_type = eval_type
    if gt_dataset:
      self.dataset = gt_dataset
      self.createIndex()

  def loadRes(self, predictions):
    """Loads result file and return a result api object.

    Args:
      predictions: a list of dictionary each representing an annotation in COCO
        format. The required fields are `image_id`, `category_id`, `score`,
        `bbox`, `segmentation`.

    Returns:
      res: result COCO api object.

    Raises:
      ValueError: if the set of image id from predctions is not the subset of
        the set of image id of the ground-truth dataset.
    """
    res = coco.COCO()
    res.dataset['images'] = copy.deepcopy(self.dataset['images'])
    res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])

    image_ids = [ann['image_id'] for ann in predictions]
    if set(image_ids) != (set(image_ids) & set(self.getImgIds())):
      raise ValueError('Results do not correspond to the current dataset!')
    for ann in predictions:
      x1, x2, y1, y2 = [ann['bbox'][0], ann['bbox'][0] + ann['bbox'][2],
                        ann['bbox'][1], ann['bbox'][1] + ann['bbox'][3]]
      if self._eval_type == 'box':
        ann['area'] = ann['bbox'][2] * ann['bbox'][3]
        ann['segmentation'] = [
            [x1, y1, x1, y2, x2, y2, x2, y1]]
      elif self._eval_type == 'mask':
        ann['area'] = mask_api.area(ann['segmentation'])

    res.dataset['annotations'] = copy.deepcopy(predictions)
    res.createIndex()
    return res


def convert_predictions_to_coco_annotations(predictions):
  """Converts a batch of predictions to annotations in COCO format.

  Args:
    predictions: a dictionary of lists of numpy arrays including the following
      fields. 'K' below denotes the maximum number of instances per image.
      Required fields:
        - source_id: a list of numpy arrays of int or string of shape
            [batch_size].
        - detection_boxes: a list of numpy arrays of float of shape
            [batch_size, K, 4], where coordinates are in the original image
            space (not the scaled image space).
        - detection_classes: a list of numpy arrays of int of shape
            [batch_size, K].
        - detection_scores: a list of numpy arrays of float of shape
            [batch_size, K].
      Optional fields:
        - detection_masks: a list of numpy arrays of float of shape
            [batch_size, K, mask_height, mask_width].
        - detection_keypoints: a list of numpy arrays of float of shape
            [batch_size, K, num_keypoints, 2]

  Returns:
    coco_predictions: prediction in COCO annotation format.
  """
  coco_predictions = []
  num_batches = len(predictions['source_id'])
  max_num_detections = predictions['detection_classes'][0].shape[1]
  use_outer_box = 'detection_outer_boxes' in predictions
  for i in range(num_batches):
    predictions['detection_boxes'][i] = box_ops.yxyx_to_xywh(
        predictions['detection_boxes'][i])
    if use_outer_box:
      predictions['detection_outer_boxes'][i] = box_ops.yxyx_to_xywh(
          predictions['detection_outer_boxes'][i])
      mask_boxes = predictions['detection_outer_boxes']
    else:
      mask_boxes = predictions['detection_boxes']

    batch_size = predictions['source_id'][i].shape[0]
    if 'detection_keypoints' in predictions:
      # Adds extra ones to indicate the visibility for each keypoint as is
      # recommended by MSCOCO. Also, convert keypoint from [y, x] to [x, y]
      # as mandated by COCO.
      num_keypoints = predictions['detection_keypoints'][i].shape[2]
      coco_keypoints = np.concatenate(
          [
              predictions['detection_keypoints'][i][..., 1:],
              predictions['detection_keypoints'][i][..., :1],
              np.ones([batch_size, max_num_detections, num_keypoints, 1]),
          ],
          axis=-1,
      ).astype(int)
    for j in range(batch_size):
      if 'detection_masks' in predictions:
        image_masks = mask_ops.paste_instance_masks(
            predictions['detection_masks'][i][j],
            mask_boxes[i][j],
            int(predictions['image_info'][i][j, 0, 0]),
            int(predictions['image_info'][i][j, 0, 1]),
        )
        binary_masks = (image_masks > 0.0).astype(np.uint8)
        encoded_masks = [
            mask_api.encode(np.asfortranarray(binary_mask))
            for binary_mask in list(binary_masks)
        ]
      for k in range(max_num_detections):
        ann = {}
        ann['image_id'] = predictions['source_id'][i][j]
        ann['category_id'] = predictions['detection_classes'][i][j, k]
        ann['bbox'] = predictions['detection_boxes'][i][j, k]
        ann['score'] = predictions['detection_scores'][i][j, k]
        if 'detection_masks' in predictions:
          ann['segmentation'] = encoded_masks[k]
        if 'detection_keypoints' in predictions:
          ann['keypoints'] = coco_keypoints[j, k].flatten().tolist()
        coco_predictions.append(ann)

  for i, ann in enumerate(coco_predictions):
    ann['id'] = i + 1

  return coco_predictions


def convert_groundtruths_to_coco_dataset(groundtruths, label_map=None):
  """Converts ground-truths to the dataset in COCO format.

  Args:
    groundtruths: a dictionary of numpy arrays including the fields below.
      Note that each element in the list represent the number for a single
      example without batch dimension. 'K' below denotes the actual number of
      instances for each image.
      Required fields:
        - source_id: a list of numpy arrays of int or string of shape
          [batch_size].
        - height: a list of numpy arrays of int of shape [batch_size].
        - width: a list of numpy arrays of int of shape [batch_size].
        - num_detections: a list of numpy arrays of int of shape [batch_size].
        - boxes: a list of numpy arrays of float of shape [batch_size, K, 4],
            where coordinates are in the original image space (not the
            normalized coordinates).
        - classes: a list of numpy arrays of int of shape [batch_size, K].
      Optional fields:
        - is_crowds: a list of numpy arrays of int of shape [batch_size, K]. If
            th field is absent, it is assumed that this instance is not crowd.
        - areas: a list of numy arrays of float of shape [batch_size, K]. If the
            field is absent, the area is calculated using either boxes or
            masks depending on which one is available.
        - masks: a list of numpy arrays of string of shape [batch_size, K],
    label_map: (optional) a dictionary that defines items from the category id
      to the category name. If `None`, collect the category mapping from the
      `groundtruths`.

  Returns:
    coco_groundtruths: the ground-truth dataset in COCO format.
  """
  source_ids = np.concatenate(groundtruths['source_id'], axis=0)
  heights = np.concatenate(groundtruths['height'], axis=0)
  widths = np.concatenate(groundtruths['width'], axis=0)
  gt_images = [{'id': int(i), 'height': int(h), 'width': int(w)} for i, h, w
               in zip(source_ids, heights, widths)]

  gt_annotations = []
  num_batches = len(groundtruths['source_id'])
  for i in range(num_batches):
    logging.log_every_n(
        logging.INFO,
        'convert_groundtruths_to_coco_dataset: Processing annotation %d', 100,
        i)
    max_num_instances = groundtruths['classes'][i].shape[1]
    batch_size = groundtruths['source_id'][i].shape[0]
    for j in range(batch_size):
      num_instances = groundtruths['num_detections'][i][j]
      if num_instances > max_num_instances:
        logging.warning(
            'num_groundtruths is larger than max_num_instances, %d v.s. %d',
            num_instances, max_num_instances)
        num_instances = max_num_instances
      for k in range(int(num_instances)):
        ann = {}
        ann['image_id'] = int(groundtruths['source_id'][i][j])
        if 'is_crowds' in groundtruths:
          ann['iscrowd'] = int(groundtruths['is_crowds'][i][j, k])
        else:
          ann['iscrowd'] = 0
        ann['category_id'] = int(groundtruths['classes'][i][j, k])
        boxes = groundtruths['boxes'][i]
        ann['bbox'] = [
            float(boxes[j, k, 1]),
            float(boxes[j, k, 0]),
            float(boxes[j, k, 3] - boxes[j, k, 1]),
            float(boxes[j, k, 2] - boxes[j, k, 0])]
        if 'areas' in groundtruths:
          ann['area'] = float(groundtruths['areas'][i][j, k])
        else:
          ann['area'] = float(
              (boxes[j, k, 3] - boxes[j, k, 1]) *
              (boxes[j, k, 2] - boxes[j, k, 0]))
        if 'masks' in groundtruths:
          if isinstance(groundtruths['masks'][i][j, k], tf.Tensor):
            mask = Image.open(
                six.BytesIO(groundtruths['masks'][i][j, k].numpy()))
          else:
            mask = Image.open(
                six.BytesIO(groundtruths['masks'][i][j, k]))
          np_mask = np.array(mask, dtype=np.uint8)
          np_mask[np_mask > 0] = 255
          encoded_mask = mask_api.encode(np.asfortranarray(np_mask))
          ann['segmentation'] = encoded_mask
          # Ensure the content of `counts` is JSON serializable string.
          if 'counts' in ann['segmentation']:
            ann['segmentation']['counts'] = six.ensure_str(
                ann['segmentation']['counts'])
          if 'areas' not in groundtruths:
            ann['area'] = mask_api.area(encoded_mask)
        if 'keypoints' in groundtruths:
          keypoints = groundtruths['keypoints'][i]
          coco_keypoints = []
          num_valid_keypoints = 0
          for z in range(len(keypoints[j, k, :, 1])):
            # Convert from [y, x] to [x, y] as mandated by COCO.
            x = float(keypoints[j, k, z, 1])
            y = float(keypoints[j, k, z, 0])
            coco_keypoints.append(x)
            coco_keypoints.append(y)
            if tf.math.is_nan(x) or tf.math.is_nan(y) or (
                x == 0 and y == 0):
              visibility = 0
            else:
              visibility = 2
              num_valid_keypoints = num_valid_keypoints + 1
            coco_keypoints.append(visibility)
          ann['keypoints'] = coco_keypoints
          ann['num_keypoints'] = num_valid_keypoints
        gt_annotations.append(ann)

  for i, ann in enumerate(gt_annotations):
    ann['id'] = i + 1

  if label_map:
    gt_categories = [{'id': i, 'name': label_map[i]} for i in label_map]
  else:
    category_ids = [gt['category_id'] for gt in gt_annotations]
    gt_categories = [{'id': i} for i in set(category_ids)]

  gt_dataset = {
      'images': gt_images,
      'categories': gt_categories,
      'annotations': copy.deepcopy(gt_annotations),
  }
  return gt_dataset


class COCOGroundtruthGenerator:
  """Generates the ground-truth annotations from a single example."""

  def __init__(self, file_pattern, file_type, num_examples, include_mask,
               regenerate_source_id=False):
    self._file_pattern = file_pattern
    self._num_examples = num_examples
    self._include_mask = include_mask
    self._dataset_fn = dataset_fn.pick_dataset_fn(file_type)
    self._regenerate_source_id = regenerate_source_id

  def _parse_single_example(self, example):
    """Parses a single serialized tf.Example proto.

    Args:
      example: a serialized tf.Example proto string.

    Returns:
      A dictionary of ground-truth with the following fields:
        source_id: a scalar tensor of int64 representing the image source_id.
        height: a scalar tensor of int64 representing the image height.
        width: a scalar tensor of int64 representing the image width.
        boxes: a float tensor of shape [K, 4], representing the ground-truth
          boxes in absolute coordinates with respect to the original image size.
        classes: a int64 tensor of shape [K], representing the class labels of
          each instances.
        is_crowds: a bool tensor of shape [K], indicating whether the instance
          is crowd.
        areas: a float tensor of shape [K], indicating the area of each
          instance.
        masks: a string tensor of shape [K], containing the bytes of the png
          mask of each instance.
    """
    decoder = tf_example_decoder.TfExampleDecoder(
        include_mask=self._include_mask,
        regenerate_source_id=self._regenerate_source_id)
    decoded_tensors = decoder.decode(example)

    image = decoded_tensors['image']
    image_size = tf.shape(image)[0:2]
    boxes = box_ops.denormalize_boxes(
        decoded_tensors['groundtruth_boxes'], image_size)

    source_id = decoded_tensors['source_id']
    if source_id.dtype is tf.string:
      source_id = tf.strings.to_number(source_id, out_type=tf.int64)

    groundtruths = {
        'source_id': source_id,
        'height': decoded_tensors['height'],
        'width': decoded_tensors['width'],
        'num_detections': tf.shape(decoded_tensors['groundtruth_classes'])[0],
        'boxes': boxes,
        'classes': decoded_tensors['groundtruth_classes'],
        'is_crowds': decoded_tensors['groundtruth_is_crowd'],
        'areas': decoded_tensors['groundtruth_area'],
    }
    if self._include_mask:
      groundtruths.update({
          'masks': decoded_tensors['groundtruth_instance_masks_png'],
      })
    return groundtruths

  def _build_pipeline(self):
    """Builds data pipeline to generate ground-truth annotations."""
    dataset = tf.data.Dataset.list_files(self._file_pattern, shuffle=False)
    dataset = dataset.interleave(
        map_func=lambda filename: self._dataset_fn(filename).prefetch(1),
        cycle_length=None,
        num_parallel_calls=tf.data.experimental.AUTOTUNE)

    dataset = dataset.take(self._num_examples)
    dataset = dataset.map(self._parse_single_example,
                          num_parallel_calls=tf.data.experimental.AUTOTUNE)
    dataset = dataset.batch(1, drop_remainder=False)
    dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
    return dataset

  def __call__(self):
    return self._build_pipeline()


def scan_and_generator_annotation_file(file_pattern: str,
                                       file_type: str,
                                       num_samples: int,
                                       include_mask: bool,
                                       annotation_file: str,
                                       regenerate_source_id: bool = False):
  """Scans and generate the COCO-style annotation JSON file given a dataset."""
  groundtruth_generator = COCOGroundtruthGenerator(
      file_pattern, file_type, num_samples, include_mask, regenerate_source_id)
  generate_annotation_file(groundtruth_generator, annotation_file)


def generate_annotation_file(groundtruth_generator,
                             annotation_file):
  """Generates COCO-style annotation JSON file given a ground-truth generator."""
  groundtruths = {}
  logging.info('Loading groundtruth annotations from dataset to memory...')
  for i, groundtruth in enumerate(groundtruth_generator()):
    logging.log_every_n(logging.INFO,
                        'generate_annotation_file: Processing annotation %d',
                        100, i)
    for k, v in six.iteritems(groundtruth):
      if k not in groundtruths:
        groundtruths[k] = [v]
      else:
        groundtruths[k].append(v)
  gt_dataset = convert_groundtruths_to_coco_dataset(groundtruths)

  logging.info('Saving groundtruth annotations to the JSON file...')
  with tf.io.gfile.GFile(annotation_file, 'w') as f:
    f.write(json.dumps(gt_dataset))
  logging.info('Done saving the JSON file...')