File size: 7,959 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The panoptic quality evaluator.

The following snippet demonstrates the use of interfaces:

  evaluator = PanopticQualityEvaluator(...)
  for _ in range(num_evals):
    for _ in range(num_batches_per_eval):
      predictions, groundtruth = predictor.predict(...)  # pop a batch.
      evaluator.update_state(groundtruths, predictions)
    evaluator.result()  # finish one full eval and reset states.

See also: https://github.com/cocodataset/cocoapi/
"""

import numpy as np
import tensorflow as tf, tf_keras

from official.vision.evaluation import panoptic_quality


def _crop_padding(mask, image_info):
  """Crops padded masks to match original image shape.

  Args:
    mask: a padded mask tensor.
    image_info: a tensor that holds information about original and preprocessed
      images.
  Returns:
    cropped and padded masks: tf.Tensor
  """
  image_shape = tf.cast(image_info[0, :], tf.int32)
  mask = tf.image.crop_to_bounding_box(
      tf.expand_dims(mask, axis=-1), 0, 0,
      image_shape[0], image_shape[1])
  return tf.expand_dims(mask[:, :, 0], axis=0)


class PanopticQualityEvaluator:
  """Panoptic Quality metric class."""

  def __init__(self, num_categories, ignored_label, max_instances_per_category,
               offset, is_thing=None, rescale_predictions=False):
    """Constructs Panoptic Quality evaluation class.

    The class provides the interface to Panoptic Quality metrics_fn.

    Args:
      num_categories: The number of segmentation categories (or "classes" in the
        dataset).
      ignored_label: A category id that is ignored in evaluation, e.g. the void
        label as defined in COCO panoptic segmentation dataset.
      max_instances_per_category: The maximum number of instances for each
        category. Used in ensuring unique instance labels.
      offset: The maximum number of unique labels. This is used, by multiplying
        the ground-truth labels, to generate unique ids for individual regions
        of overlap between ground-truth and predicted segments.
      is_thing: A boolean array of length `num_categories`. The entry
        `is_thing[category_id]` is True iff that category is a "thing" category
        instead of "stuff." Default to `None`, and it means categories are not
        classified into these two categories.
      rescale_predictions: `bool`, whether to scale back prediction to original
        image sizes. If True, groundtruths['image_info'] is used to rescale
        predictions.
    """
    self._pq_metric_module = panoptic_quality.PanopticQuality(
        num_categories, ignored_label, max_instances_per_category, offset)
    self._is_thing = is_thing
    self._rescale_predictions = rescale_predictions
    self._required_prediction_fields = ['category_mask', 'instance_mask']
    self._required_groundtruth_fields = ['category_mask', 'instance_mask']
    self.reset_states()

  @property
  def name(self):
    return 'panoptic_quality'

  def reset_states(self):
    """Resets internal states for a fresh run."""
    self._pq_metric_module.reset()

  def result(self):
    """Evaluates detection results, and reset_states."""
    results = self._pq_metric_module.result(self._is_thing)
    self.reset_states()
    return results

  def _convert_to_numpy(self, groundtruths, predictions):
    """Converts tesnors to numpy arrays."""
    if groundtruths:
      labels = tf.nest.map_structure(lambda x: x.numpy(), groundtruths)
      numpy_groundtruths = {}
      for key, val in labels.items():
        if isinstance(val, tuple):
          val = np.concatenate(val)
        numpy_groundtruths[key] = val
    else:
      numpy_groundtruths = groundtruths

    if predictions:
      outputs = tf.nest.map_structure(lambda x: x.numpy(), predictions)
      numpy_predictions = {}
      for key, val in outputs.items():
        if isinstance(val, tuple):
          val = np.concatenate(val)
        numpy_predictions[key] = val
    else:
      numpy_predictions = predictions

    return numpy_groundtruths, numpy_predictions

  def update_state(self, groundtruths, predictions):
    """Update and aggregate detection results and ground-truth data.

    Args:
      groundtruths: a dictionary of Tensors including the fields below. See also
        different parsers under `../dataloader` for more details.
        Required fields:
          - category_mask: a numpy array of uint16 of shape [batch_size, H, W].
          - instance_mask: a numpy array of uint16 of shape [batch_size, H, W].
          - image_info: [batch, 4, 2], a tensor that holds information about
          original and preprocessed images. Each entry is in the format of
          [[original_height, original_width], [input_height, input_width],
          [y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
          desired_width] is the actual scaled image size, and [y_scale, x_scale]
          is the scaling factor, which is the ratio of scaled dimension /
          original dimension.
      predictions: a dictionary of tensors including the fields below. See
        different parsers under `../dataloader` for more details.
        Required fields:
          - category_mask: a numpy array of uint16 of shape [batch_size, H, W].
          - instance_mask: a numpy array of uint16 of shape [batch_size, H, W].

    Raises:
      ValueError: if the required prediction or ground-truth fields are not
        present in the incoming `predictions` or `groundtruths`.
    """
    groundtruths, predictions = self._convert_to_numpy(groundtruths,
                                                       predictions)
    for k in self._required_prediction_fields:
      if k not in predictions:
        raise ValueError(
            'Missing the required key `{}` in predictions!'.format(k))

    for k in self._required_groundtruth_fields:
      if k not in groundtruths:
        raise ValueError(
            'Missing the required key `{}` in groundtruths!'.format(k))

    if self._rescale_predictions:
      for idx in range(len(groundtruths['category_mask'])):
        image_info = groundtruths['image_info'][idx]
        groundtruths_ = {
            'category_mask':
                _crop_padding(groundtruths['category_mask'][idx], image_info),
            'instance_mask':
                _crop_padding(groundtruths['instance_mask'][idx], image_info),
            }
        predictions_ = {
            'category_mask':
                _crop_padding(predictions['category_mask'][idx], image_info),
            'instance_mask':
                _crop_padding(predictions['instance_mask'][idx], image_info),
            }
        groundtruths_, predictions_ = self._convert_to_numpy(
            groundtruths_, predictions_)

        self._pq_metric_module.compare_and_accumulate(
            groundtruths_, predictions_)
    else:
      for idx in range(len(groundtruths['category_mask'])):
        groundtruths_ = {
            'category_mask': groundtruths['category_mask'][idx],
            'instance_mask': groundtruths['instance_mask'][idx]
        }
        predictions_ = {
            'category_mask': predictions['category_mask'][idx],
            'instance_mask': predictions['instance_mask'][idx]
        }
        self._pq_metric_module.compare_and_accumulate(groundtruths_,
                                                      predictions_)