File size: 4,867 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Build classification models."""

from typing import Any, Mapping, Optional
# Import libraries
import tensorflow as tf, tf_keras

layers = tf_keras.layers


@tf_keras.utils.register_keras_serializable(package='Vision')
class ClassificationModel(tf_keras.Model):
  """A classification class builder."""

  def __init__(
      self,
      backbone: tf_keras.Model,
      num_classes: int,
      input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      dropout_rate: float = 0.0,
      kernel_initializer: str = 'random_uniform',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      add_head_batch_norm: bool = False,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      skip_logits_layer: bool = False,
      **kwargs):
    """Classification initialization function.

    Args:
      backbone: a backbone network.
      num_classes: `int` number of classes in classification task.
      input_specs: `tf_keras.layers.InputSpec` specs of the input tensor.
      dropout_rate: `float` rate for dropout regularization.
      kernel_initializer: kernel initializer for the dense layer.
      kernel_regularizer: tf_keras.regularizers.Regularizer object. Default to
                          None.
      bias_regularizer: tf_keras.regularizers.Regularizer object. Default to
                          None.
      add_head_batch_norm: `bool` whether to add a batch normalization layer
        before pool.
      use_sync_bn: `bool` if True, use synchronized batch normalization.
      norm_momentum: `float` normalization momentum for the moving average.
      norm_epsilon: `float` small float added to variance to avoid dividing by
        zero.
      skip_logits_layer: `bool`, whether to skip the prediction layer.
      **kwargs: keyword arguments to be passed.
    """
    norm = tf_keras.layers.BatchNormalization
    axis = -1 if tf_keras.backend.image_data_format() == 'channels_last' else 1

    inputs = tf_keras.Input(shape=input_specs.shape[1:], name=input_specs.name)
    endpoints = backbone(inputs)
    x = endpoints[max(endpoints.keys())]

    if add_head_batch_norm:
      x = norm(
          axis=axis,
          momentum=norm_momentum,
          epsilon=norm_epsilon,
          synchronized=use_sync_bn,
      )(x)

    # Depending on the backbone type, backbone's output can be
    # [batch_size, height, weight, channel_size] or
    # [batch_size, token_size, hidden_size].
    if len(x.shape) == 4:
      x = tf_keras.layers.GlobalAveragePooling2D()(x)
    elif len(x.shape) == 3:
      x = tf_keras.layers.GlobalAveragePooling1D()(x)

    if not skip_logits_layer:
      x = tf_keras.layers.Dropout(dropout_rate)(x)
      x = tf_keras.layers.Dense(
          num_classes,
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer)(
              x)

    super(ClassificationModel, self).__init__(
        inputs=inputs, outputs=x, **kwargs)
    self._config_dict = {
        'backbone': backbone,
        'num_classes': num_classes,
        'input_specs': input_specs,
        'dropout_rate': dropout_rate,
        'kernel_initializer': kernel_initializer,
        'kernel_regularizer': kernel_regularizer,
        'bias_regularizer': bias_regularizer,
        'add_head_batch_norm': add_head_batch_norm,
        'use_sync_bn': use_sync_bn,
        'norm_momentum': norm_momentum,
        'norm_epsilon': norm_epsilon,
    }
    self._input_specs = input_specs
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._backbone = backbone
    self._norm = norm

  @property
  def checkpoint_items(self) -> Mapping[str, tf_keras.Model]:
    """Returns a dictionary of items to be additionally checkpointed."""
    return dict(backbone=self.backbone)

  @property
  def backbone(self) -> tf_keras.Model:
    return self._backbone

  def get_config(self) -> Mapping[str, Any]:
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)