Spaces:
Runtime error
Runtime error
File size: 4,867 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Build classification models."""
from typing import Any, Mapping, Optional
# Import libraries
import tensorflow as tf, tf_keras
layers = tf_keras.layers
@tf_keras.utils.register_keras_serializable(package='Vision')
class ClassificationModel(tf_keras.Model):
"""A classification class builder."""
def __init__(
self,
backbone: tf_keras.Model,
num_classes: int,
input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
shape=[None, None, None, 3]),
dropout_rate: float = 0.0,
kernel_initializer: str = 'random_uniform',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
add_head_batch_norm: bool = False,
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
skip_logits_layer: bool = False,
**kwargs):
"""Classification initialization function.
Args:
backbone: a backbone network.
num_classes: `int` number of classes in classification task.
input_specs: `tf_keras.layers.InputSpec` specs of the input tensor.
dropout_rate: `float` rate for dropout regularization.
kernel_initializer: kernel initializer for the dense layer.
kernel_regularizer: tf_keras.regularizers.Regularizer object. Default to
None.
bias_regularizer: tf_keras.regularizers.Regularizer object. Default to
None.
add_head_batch_norm: `bool` whether to add a batch normalization layer
before pool.
use_sync_bn: `bool` if True, use synchronized batch normalization.
norm_momentum: `float` normalization momentum for the moving average.
norm_epsilon: `float` small float added to variance to avoid dividing by
zero.
skip_logits_layer: `bool`, whether to skip the prediction layer.
**kwargs: keyword arguments to be passed.
"""
norm = tf_keras.layers.BatchNormalization
axis = -1 if tf_keras.backend.image_data_format() == 'channels_last' else 1
inputs = tf_keras.Input(shape=input_specs.shape[1:], name=input_specs.name)
endpoints = backbone(inputs)
x = endpoints[max(endpoints.keys())]
if add_head_batch_norm:
x = norm(
axis=axis,
momentum=norm_momentum,
epsilon=norm_epsilon,
synchronized=use_sync_bn,
)(x)
# Depending on the backbone type, backbone's output can be
# [batch_size, height, weight, channel_size] or
# [batch_size, token_size, hidden_size].
if len(x.shape) == 4:
x = tf_keras.layers.GlobalAveragePooling2D()(x)
elif len(x.shape) == 3:
x = tf_keras.layers.GlobalAveragePooling1D()(x)
if not skip_logits_layer:
x = tf_keras.layers.Dropout(dropout_rate)(x)
x = tf_keras.layers.Dense(
num_classes,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer)(
x)
super(ClassificationModel, self).__init__(
inputs=inputs, outputs=x, **kwargs)
self._config_dict = {
'backbone': backbone,
'num_classes': num_classes,
'input_specs': input_specs,
'dropout_rate': dropout_rate,
'kernel_initializer': kernel_initializer,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer,
'add_head_batch_norm': add_head_batch_norm,
'use_sync_bn': use_sync_bn,
'norm_momentum': norm_momentum,
'norm_epsilon': norm_epsilon,
}
self._input_specs = input_specs
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._backbone = backbone
self._norm = norm
@property
def checkpoint_items(self) -> Mapping[str, tf_keras.Model]:
"""Returns a dictionary of items to be additionally checkpointed."""
return dict(backbone=self.backbone)
@property
def backbone(self) -> tf_keras.Model:
return self._backbone
def get_config(self) -> Mapping[str, Any]:
return self._config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
|