Spaces:
Runtime error
Runtime error
File size: 19,627 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Anchor box and labeler definition."""
import collections
import math
from typing import Dict, Optional, Tuple
# Import libraries
import tensorflow as tf, tf_keras
from official.vision.ops import anchor_generator
from official.vision.ops import box_matcher
from official.vision.ops import iou_similarity
from official.vision.ops import target_gather
from official.vision.utils.object_detection import balanced_positive_negative_sampler
from official.vision.utils.object_detection import box_list
from official.vision.utils.object_detection import faster_rcnn_box_coder
class Anchor(object):
"""Anchor class for anchor-based object detectors."""
def __init__(
self,
min_level,
max_level,
num_scales,
aspect_ratios,
anchor_size,
image_size,
):
"""Constructs multi-scale anchors.
Args:
min_level: integer number of minimum level of the output feature pyramid.
max_level: integer number of maximum level of the output feature pyramid.
num_scales: integer number representing intermediate scales added on each
level. For instances, num_scales=2 adds one additional intermediate
anchor scales [2^0, 2^0.5] on each level.
aspect_ratios: list of float numbers representing the aspect ratio anchors
added on each level. The number indicates the ratio of width to height.
For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each
scale level.
anchor_size: float number representing the scale of size of the base
anchor to the feature stride 2^level.
image_size: a list of integer numbers or Tensors representing [height,
width] of the input image size.The image_size should be divided by the
largest feature stride 2^max_level.
"""
self.min_level = min_level
self.max_level = max_level
self.num_scales = num_scales
self.aspect_ratios = aspect_ratios
self.anchor_size = anchor_size
self.image_size = image_size
self.boxes = self._generate_boxes()
def _generate_boxes(self) -> tf.Tensor:
"""Generates multi-scale anchor boxes.
Returns:
a Tensor of shape [N, 4], representing anchor boxes of all levels
concatenated together.
"""
boxes_all = []
for level in range(self.min_level, self.max_level + 1):
boxes_l = []
feat_size = math.ceil(self.image_size[0] / 2**level)
stride = tf.cast(self.image_size[0] / feat_size, tf.float32)
for scale in range(self.num_scales):
for aspect_ratio in self.aspect_ratios:
intermidate_scale = 2 ** (scale / float(self.num_scales))
base_anchor_size = self.anchor_size * stride * intermidate_scale
aspect_x = aspect_ratio**0.5
aspect_y = aspect_ratio**-0.5
half_anchor_size_x = base_anchor_size * aspect_x / 2.0
half_anchor_size_y = base_anchor_size * aspect_y / 2.0
x = tf.range(stride / 2, self.image_size[1], stride)
y = tf.range(stride / 2, self.image_size[0], stride)
xv, yv = tf.meshgrid(x, y)
xv = tf.cast(tf.reshape(xv, [-1]), dtype=tf.float32)
yv = tf.cast(tf.reshape(yv, [-1]), dtype=tf.float32)
# Tensor shape Nx4.
boxes = tf.stack(
[
yv - half_anchor_size_y,
xv - half_anchor_size_x,
yv + half_anchor_size_y,
xv + half_anchor_size_x,
],
axis=1,
)
boxes_l.append(boxes)
# Concat anchors on the same level to tensor shape NxAx4.
boxes_l = tf.stack(boxes_l, axis=1)
boxes_l = tf.reshape(boxes_l, [-1, 4])
boxes_all.append(boxes_l)
return tf.concat(boxes_all, axis=0)
def unpack_labels(self, labels: tf.Tensor) -> Dict[str, tf.Tensor]:
"""Unpacks an array of labels into multi-scales labels."""
unpacked_labels = collections.OrderedDict()
count = 0
for level in range(self.min_level, self.max_level + 1):
feat_size_y = tf.cast(
math.ceil(self.image_size[0] / 2**level), tf.int32
)
feat_size_x = tf.cast(
math.ceil(self.image_size[1] / 2**level), tf.int32
)
steps = feat_size_y * feat_size_x * self.anchors_per_location
unpacked_labels[str(level)] = tf.reshape(
labels[count : count + steps], [feat_size_y, feat_size_x, -1]
)
count += steps
return unpacked_labels
@property
def anchors_per_location(self):
return self.num_scales * len(self.aspect_ratios)
@property
def multilevel_boxes(self):
return self.unpack_labels(self.boxes)
class AnchorLabeler(object):
"""Labeler for dense object detector."""
def __init__(
self,
match_threshold=0.5,
unmatched_threshold=0.5,
box_coder_weights=None,
):
"""Constructs anchor labeler to assign labels to anchors.
Args:
match_threshold: a float number between 0 and 1 representing the
lower-bound threshold to assign positive labels for anchors. An anchor
with a score over the threshold is labeled positive.
unmatched_threshold: a float number between 0 and 1 representing the
upper-bound threshold to assign negative labels for anchors. An anchor
with a score below the threshold is labeled negative.
box_coder_weights: Optional `list` of 4 positive floats to scale y, x, h,
and w when encoding box coordinates. If set to None, does not perform
scaling. For Faster RCNN, the open-source implementation recommends
using [10.0, 10.0, 5.0, 5.0].
"""
self.similarity_calc = iou_similarity.IouSimilarity()
self.target_gather = target_gather.TargetGather()
self.matcher = box_matcher.BoxMatcher(
thresholds=[unmatched_threshold, match_threshold],
indicators=[-1, -2, 1],
force_match_for_each_col=True,
)
self.box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
scale_factors=box_coder_weights,
)
def label_anchors(
self,
anchor_boxes: Dict[str, tf.Tensor],
gt_boxes: tf.Tensor,
gt_labels: tf.Tensor,
gt_attributes: Optional[Dict[str, tf.Tensor]] = None,
gt_weights: Optional[tf.Tensor] = None,
) -> Tuple[
Dict[str, tf.Tensor],
Dict[str, tf.Tensor],
Dict[str, Dict[str, tf.Tensor]],
tf.Tensor,
tf.Tensor,
]:
"""Labels anchors with ground truth inputs.
Args:
anchor_boxes: An ordered dictionary with keys [min_level, min_level+1,
..., max_level]. The values are tensor with shape [height_l, width_l,
num_anchors_per_location * 4]. The height_l and width_l represent the
dimension of the feature pyramid at l-th level. For each anchor box, the
tensor stores [y0, x0, y1, x1] for the four corners.
gt_boxes: A float tensor with shape [N, 4] representing ground-truth
boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a
box.
gt_labels: A integer tensor with shape [N, 1] representing ground-truth
classes.
gt_attributes: If not None, a dict of (name, gt_attribute) pairs.
`gt_attribute` is a float tensor with shape [N, attribute_size]
representing ground-truth attributes.
gt_weights: If not None, a float tensor with shape [N] representing
ground-truth weights.
Returns:
cls_targets_dict: An ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, num_anchors_per_location]. The height_l and
width_l represent the dimension of class logits at l-th level.
box_targets_dict: An ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, num_anchors_per_location * 4]. The height_l
and width_l represent the dimension of bounding box regression output at
l-th level.
attribute_targets_dict: A dict with (name, attribute_targets) pairs. Each
`attribute_targets` represents an ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, num_anchors_per_location * attribute_size].
The height_l and width_l represent the dimension of attribute prediction
output at l-th level.
cls_weights: A flattened Tensor with shape [num_anchors], that serves as
masking / sample weight for classification loss. Its value is 1.0 for
positive and negative matched anchors, and 0.0 for ignored anchors.
box_weights: A flattened Tensor with shape [num_anchors], that serves as
masking / sample weight for regression loss. Its value is 1.0 for
positive matched anchors, and 0.0 for negative and ignored anchors.
"""
flattened_anchor_boxes = []
for anchors in anchor_boxes.values():
flattened_anchor_boxes.append(tf.reshape(anchors, [-1, 4]))
flattened_anchor_boxes = tf.concat(flattened_anchor_boxes, axis=0)
similarity_matrix = self.similarity_calc(flattened_anchor_boxes, gt_boxes)
match_indices, match_indicators = self.matcher(similarity_matrix)
mask = tf.less_equal(match_indicators, 0)
cls_mask = tf.expand_dims(mask, -1)
cls_targets = self.target_gather(gt_labels, match_indices, cls_mask, -1)
box_mask = tf.tile(cls_mask, [1, 4])
box_targets = self.target_gather(gt_boxes, match_indices, box_mask)
att_targets = {}
if gt_attributes:
for k, v in gt_attributes.items():
att_size = v.get_shape().as_list()[-1]
att_mask = tf.tile(cls_mask, [1, att_size])
att_targets[k] = self.target_gather(v, match_indices, att_mask, 0.0)
# When there is no ground truth labels, we force the weight to be 1 so that
# negative matched anchors get non-zero weights.
num_gt_labels = tf.shape(gt_labels)[0]
weights = tf.cond(
tf.greater(num_gt_labels, 0),
lambda: tf.ones_like(gt_labels, dtype=tf.float32)[..., -1],
lambda: tf.ones([1], dtype=tf.float32),
)
if gt_weights is not None:
weights = tf.cond(
tf.greater(num_gt_labels, 0),
lambda: tf.math.multiply(weights, gt_weights),
lambda: weights,
)
box_weights = self.target_gather(weights, match_indices, mask)
ignore_mask = tf.equal(match_indicators, -2)
cls_weights = self.target_gather(weights, match_indices, ignore_mask)
box_targets = box_list.BoxList(box_targets)
anchor_box = box_list.BoxList(flattened_anchor_boxes)
box_targets = self.box_coder.encode(box_targets, anchor_box)
# Unpacks labels into multi-level representations.
cls_targets = unpack_targets(cls_targets, anchor_boxes)
box_targets = unpack_targets(box_targets, anchor_boxes)
attribute_targets = {
k: unpack_targets(v, anchor_boxes) for k, v in att_targets.items()
}
return (
cls_targets,
box_targets,
attribute_targets,
cls_weights,
box_weights,
)
class RpnAnchorLabeler(AnchorLabeler):
"""Labeler for Region Proposal Network."""
def __init__(
self,
match_threshold=0.7,
unmatched_threshold=0.3,
rpn_batch_size_per_im=256,
rpn_fg_fraction=0.5,
):
AnchorLabeler.__init__(
self,
match_threshold=match_threshold,
unmatched_threshold=unmatched_threshold,
)
self._rpn_batch_size_per_im = rpn_batch_size_per_im
self._rpn_fg_fraction = rpn_fg_fraction
def _get_rpn_samples(self, match_results):
"""Computes anchor labels.
This function performs subsampling for foreground (fg) and background (bg)
anchors.
Args:
match_results: A integer tensor with shape [N] representing the matching
results of anchors. (1) match_results[i]>=0, meaning that column i is
matched with row match_results[i]. (2) match_results[i]=-1, meaning that
column i is not matched. (3) match_results[i]=-2, meaning that column i
is ignored.
Returns:
score_targets: a integer tensor with the a shape of [N].
(1) score_targets[i]=1, the anchor is a positive sample.
(2) score_targets[i]=0, negative. (3) score_targets[i]=-1, the anchor is
don't care (ignore).
"""
sampler = (
balanced_positive_negative_sampler.BalancedPositiveNegativeSampler(
positive_fraction=self._rpn_fg_fraction, is_static=False
)
)
# indicator includes both positive and negative labels.
# labels includes only positives labels.
# positives = indicator & labels.
# negatives = indicator & !labels.
# ignore = !indicator.
indicator = tf.greater(match_results, -2)
labels = tf.greater(match_results, -1)
samples = sampler.subsample(indicator, self._rpn_batch_size_per_im, labels)
positive_labels = tf.where(
tf.logical_and(samples, labels),
tf.constant(2, dtype=tf.int32, shape=match_results.shape),
tf.constant(0, dtype=tf.int32, shape=match_results.shape),
)
negative_labels = tf.where(
tf.logical_and(samples, tf.logical_not(labels)),
tf.constant(1, dtype=tf.int32, shape=match_results.shape),
tf.constant(0, dtype=tf.int32, shape=match_results.shape),
)
ignore_labels = tf.fill(match_results.shape, -1)
return (
ignore_labels + positive_labels + negative_labels,
positive_labels,
negative_labels,
)
def label_anchors( # pytype: disable=signature-mismatch # overriding-parameter-count-checks
self,
anchor_boxes: Dict[str, tf.Tensor],
gt_boxes: tf.Tensor,
gt_labels: tf.Tensor,
) -> Tuple[Dict[str, tf.Tensor], Dict[str, tf.Tensor]]:
"""Labels anchors with ground truth inputs.
Args:
anchor_boxes: An ordered dictionary with keys [min_level, min_level+1,
..., max_level]. The values are tensor with shape [height_l, width_l,
num_anchors_per_location * 4]. The height_l and width_l represent the
dimension of the feature pyramid at l-th level. For each anchor box, the
tensor stores [y0, x0, y1, x1] for the four corners.
gt_boxes: A float tensor with shape [N, 4] representing ground-truth
boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a
box.
gt_labels: A integer tensor with shape [N, 1] representing ground-truth
classes.
Returns:
score_targets_dict: An ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, num_anchors_per_location]. The height_l and
width_l represent the dimension of class logits at l-th level.
box_targets_dict: An ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, num_anchors_per_location * 4]. The height_l
and width_l represent the dimension of bounding box regression output at
l-th level.
"""
flattened_anchor_boxes = []
for anchors in anchor_boxes.values():
flattened_anchor_boxes.append(tf.reshape(anchors, [-1, 4]))
flattened_anchor_boxes = tf.concat(flattened_anchor_boxes, axis=0)
similarity_matrix = self.similarity_calc(flattened_anchor_boxes, gt_boxes)
match_indices, match_indicators = self.matcher(similarity_matrix)
box_mask = tf.tile(
tf.expand_dims(tf.less_equal(match_indicators, 0), -1), [1, 4]
)
box_targets = self.target_gather(gt_boxes, match_indices, box_mask)
box_targets_list = box_list.BoxList(box_targets)
anchor_box_list = box_list.BoxList(flattened_anchor_boxes)
box_targets = self.box_coder.encode(box_targets_list, anchor_box_list)
# Zero out the unmatched and ignored regression targets.
num_matches = match_indices.shape.as_list()[0] or tf.shape(match_indices)[0]
unmatched_ignored_box_targets = tf.zeros([num_matches, 4], dtype=tf.float32)
matched_anchors_mask = tf.greater_equal(match_indicators, 0)
# To broadcast matched_anchors_mask to the same shape as
# matched_reg_targets.
matched_anchors_mask = tf.tile(
tf.expand_dims(matched_anchors_mask, 1), [1, tf.shape(box_targets)[1]]
)
box_targets = tf.where(
matched_anchors_mask, box_targets, unmatched_ignored_box_targets
)
# score_targets contains the subsampled positive and negative anchors.
score_targets, _, _ = self._get_rpn_samples(match_indicators)
# Unpacks labels.
score_targets_dict = unpack_targets(score_targets, anchor_boxes)
box_targets_dict = unpack_targets(box_targets, anchor_boxes)
return score_targets_dict, box_targets_dict
def build_anchor_generator(
min_level, max_level, num_scales, aspect_ratios, anchor_size
):
"""Build anchor generator from levels."""
anchor_sizes = collections.OrderedDict()
strides = collections.OrderedDict()
scales = []
for scale in range(num_scales):
scales.append(2 ** (scale / float(num_scales)))
for level in range(min_level, max_level + 1):
stride = 2**level
strides[str(level)] = stride
anchor_sizes[str(level)] = anchor_size * stride
anchor_gen = anchor_generator.AnchorGenerator(
anchor_sizes=anchor_sizes,
scales=scales,
aspect_ratios=aspect_ratios,
strides=strides,
)
return anchor_gen
def unpack_targets(
targets: tf.Tensor, anchor_boxes_dict: Dict[str, tf.Tensor]
) -> Dict[str, tf.Tensor]:
"""Unpacks an array of labels into multi-scales labels.
Args:
targets: A tensor with shape [num_anchors, M] representing the packed
targets with M values stored for each anchor.
anchor_boxes_dict: An ordered dictionary with keys [min_level, min_level+1,
..., max_level]. The values are tensor with shape [height_l, width_l,
num_anchors_per_location * 4]. The height_l and width_l represent the
dimension of the feature pyramid at l-th level. For each anchor box, the
tensor stores [y0, x0, y1, x1] for the four corners.
Returns:
unpacked_targets: An ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with shape
[height_l, width_l, num_anchors_per_location * M]. The height_l and
width_l represent the dimension of the feature pyramid at l-th level. M is
the number of values stored for each anchor.
"""
unpacked_targets = collections.OrderedDict()
count = 0
for level, anchor_boxes in anchor_boxes_dict.items():
feat_size_shape = anchor_boxes.shape.as_list()
feat_size_y = feat_size_shape[0]
feat_size_x = feat_size_shape[1]
anchors_per_location = int(feat_size_shape[2] / 4)
steps = feat_size_y * feat_size_x * anchors_per_location
unpacked_targets[level] = tf.reshape(
targets[count : count + steps], [feat_size_y, feat_size_x, -1]
)
count += steps
return unpacked_targets
|