File size: 19,627 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Anchor box and labeler definition."""

import collections
import math
from typing import Dict, Optional, Tuple

# Import libraries

import tensorflow as tf, tf_keras

from official.vision.ops import anchor_generator
from official.vision.ops import box_matcher
from official.vision.ops import iou_similarity
from official.vision.ops import target_gather
from official.vision.utils.object_detection import balanced_positive_negative_sampler
from official.vision.utils.object_detection import box_list
from official.vision.utils.object_detection import faster_rcnn_box_coder


class Anchor(object):
  """Anchor class for anchor-based object detectors."""

  def __init__(
      self,
      min_level,
      max_level,
      num_scales,
      aspect_ratios,
      anchor_size,
      image_size,
  ):
    """Constructs multi-scale anchors.

    Args:
      min_level: integer number of minimum level of the output feature pyramid.
      max_level: integer number of maximum level of the output feature pyramid.
      num_scales: integer number representing intermediate scales added on each
        level. For instances, num_scales=2 adds one additional intermediate
        anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: list of float numbers representing the aspect ratio anchors
        added on each level. The number indicates the ratio of width to height.
        For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each
        scale level.
      anchor_size: float number representing the scale of size of the base
        anchor to the feature stride 2^level.
      image_size: a list of integer numbers or Tensors representing [height,
        width] of the input image size.The image_size should be divided by the
        largest feature stride 2^max_level.
    """
    self.min_level = min_level
    self.max_level = max_level
    self.num_scales = num_scales
    self.aspect_ratios = aspect_ratios
    self.anchor_size = anchor_size
    self.image_size = image_size
    self.boxes = self._generate_boxes()

  def _generate_boxes(self) -> tf.Tensor:
    """Generates multi-scale anchor boxes.

    Returns:
      a Tensor of shape [N, 4], representing anchor boxes of all levels
      concatenated together.
    """
    boxes_all = []
    for level in range(self.min_level, self.max_level + 1):
      boxes_l = []
      feat_size = math.ceil(self.image_size[0] / 2**level)
      stride = tf.cast(self.image_size[0] / feat_size, tf.float32)
      for scale in range(self.num_scales):
        for aspect_ratio in self.aspect_ratios:
          intermidate_scale = 2 ** (scale / float(self.num_scales))
          base_anchor_size = self.anchor_size * stride * intermidate_scale
          aspect_x = aspect_ratio**0.5
          aspect_y = aspect_ratio**-0.5
          half_anchor_size_x = base_anchor_size * aspect_x / 2.0
          half_anchor_size_y = base_anchor_size * aspect_y / 2.0
          x = tf.range(stride / 2, self.image_size[1], stride)
          y = tf.range(stride / 2, self.image_size[0], stride)
          xv, yv = tf.meshgrid(x, y)
          xv = tf.cast(tf.reshape(xv, [-1]), dtype=tf.float32)
          yv = tf.cast(tf.reshape(yv, [-1]), dtype=tf.float32)
          # Tensor shape Nx4.
          boxes = tf.stack(
              [
                  yv - half_anchor_size_y,
                  xv - half_anchor_size_x,
                  yv + half_anchor_size_y,
                  xv + half_anchor_size_x,
              ],
              axis=1,
          )
          boxes_l.append(boxes)
      # Concat anchors on the same level to tensor shape NxAx4.
      boxes_l = tf.stack(boxes_l, axis=1)
      boxes_l = tf.reshape(boxes_l, [-1, 4])
      boxes_all.append(boxes_l)
    return tf.concat(boxes_all, axis=0)

  def unpack_labels(self, labels: tf.Tensor) -> Dict[str, tf.Tensor]:
    """Unpacks an array of labels into multi-scales labels."""
    unpacked_labels = collections.OrderedDict()
    count = 0
    for level in range(self.min_level, self.max_level + 1):
      feat_size_y = tf.cast(
          math.ceil(self.image_size[0] / 2**level), tf.int32
      )
      feat_size_x = tf.cast(
          math.ceil(self.image_size[1] / 2**level), tf.int32
      )
      steps = feat_size_y * feat_size_x * self.anchors_per_location
      unpacked_labels[str(level)] = tf.reshape(
          labels[count : count + steps], [feat_size_y, feat_size_x, -1]
      )
      count += steps
    return unpacked_labels

  @property
  def anchors_per_location(self):
    return self.num_scales * len(self.aspect_ratios)

  @property
  def multilevel_boxes(self):
    return self.unpack_labels(self.boxes)


class AnchorLabeler(object):
  """Labeler for dense object detector."""

  def __init__(
      self,
      match_threshold=0.5,
      unmatched_threshold=0.5,
      box_coder_weights=None,
  ):
    """Constructs anchor labeler to assign labels to anchors.

    Args:
      match_threshold: a float number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: a float number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
      box_coder_weights: Optional `list` of 4 positive floats to scale y, x, h,
        and w when encoding box coordinates. If set to None, does not perform
        scaling. For Faster RCNN, the open-source implementation recommends
        using [10.0, 10.0, 5.0, 5.0].
    """
    self.similarity_calc = iou_similarity.IouSimilarity()
    self.target_gather = target_gather.TargetGather()
    self.matcher = box_matcher.BoxMatcher(
        thresholds=[unmatched_threshold, match_threshold],
        indicators=[-1, -2, 1],
        force_match_for_each_col=True,
    )
    self.box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
        scale_factors=box_coder_weights,
    )

  def label_anchors(
      self,
      anchor_boxes: Dict[str, tf.Tensor],
      gt_boxes: tf.Tensor,
      gt_labels: tf.Tensor,
      gt_attributes: Optional[Dict[str, tf.Tensor]] = None,
      gt_weights: Optional[tf.Tensor] = None,
  ) -> Tuple[
      Dict[str, tf.Tensor],
      Dict[str, tf.Tensor],
      Dict[str, Dict[str, tf.Tensor]],
      tf.Tensor,
      tf.Tensor,
  ]:
    """Labels anchors with ground truth inputs.

    Args:
      anchor_boxes: An ordered dictionary with keys [min_level, min_level+1,
        ..., max_level]. The values are tensor with shape [height_l, width_l,
        num_anchors_per_location * 4]. The height_l and width_l represent the
        dimension of the feature pyramid at l-th level. For each anchor box, the
        tensor stores [y0, x0, y1, x1] for the four corners.
      gt_boxes: A float tensor with shape [N, 4] representing ground-truth
        boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a
        box.
      gt_labels: A integer tensor with shape [N, 1] representing ground-truth
        classes.
      gt_attributes: If not None, a dict of (name, gt_attribute) pairs.
        `gt_attribute` is a float tensor with shape [N, attribute_size]
        representing ground-truth attributes.
      gt_weights: If not None, a float tensor with shape [N] representing
        ground-truth weights.

    Returns:
      cls_targets_dict: An ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location]. The height_l and
        width_l represent the dimension of class logits at l-th level.
      box_targets_dict: An ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location * 4]. The height_l
        and width_l represent the dimension of bounding box regression output at
        l-th level.
      attribute_targets_dict: A dict with (name, attribute_targets) pairs. Each
        `attribute_targets` represents an ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location * attribute_size].
        The height_l and width_l represent the dimension of attribute prediction
        output at l-th level.
      cls_weights: A flattened Tensor with shape [num_anchors], that serves as
        masking / sample weight for classification loss. Its value is 1.0 for
        positive and negative matched anchors, and 0.0 for ignored anchors.
      box_weights: A flattened Tensor with shape [num_anchors], that serves as
        masking / sample weight for regression loss. Its value is 1.0 for
        positive matched anchors, and 0.0 for negative and ignored anchors.
    """
    flattened_anchor_boxes = []
    for anchors in anchor_boxes.values():
      flattened_anchor_boxes.append(tf.reshape(anchors, [-1, 4]))
    flattened_anchor_boxes = tf.concat(flattened_anchor_boxes, axis=0)
    similarity_matrix = self.similarity_calc(flattened_anchor_boxes, gt_boxes)
    match_indices, match_indicators = self.matcher(similarity_matrix)

    mask = tf.less_equal(match_indicators, 0)
    cls_mask = tf.expand_dims(mask, -1)
    cls_targets = self.target_gather(gt_labels, match_indices, cls_mask, -1)
    box_mask = tf.tile(cls_mask, [1, 4])
    box_targets = self.target_gather(gt_boxes, match_indices, box_mask)
    att_targets = {}
    if gt_attributes:
      for k, v in gt_attributes.items():
        att_size = v.get_shape().as_list()[-1]
        att_mask = tf.tile(cls_mask, [1, att_size])
        att_targets[k] = self.target_gather(v, match_indices, att_mask, 0.0)

    # When there is no ground truth labels, we force the weight to be 1 so that
    # negative matched anchors get non-zero weights.
    num_gt_labels = tf.shape(gt_labels)[0]
    weights = tf.cond(
        tf.greater(num_gt_labels, 0),
        lambda: tf.ones_like(gt_labels, dtype=tf.float32)[..., -1],
        lambda: tf.ones([1], dtype=tf.float32),
    )
    if gt_weights is not None:
      weights = tf.cond(
          tf.greater(num_gt_labels, 0),
          lambda: tf.math.multiply(weights, gt_weights),
          lambda: weights,
      )
    box_weights = self.target_gather(weights, match_indices, mask)
    ignore_mask = tf.equal(match_indicators, -2)
    cls_weights = self.target_gather(weights, match_indices, ignore_mask)
    box_targets = box_list.BoxList(box_targets)
    anchor_box = box_list.BoxList(flattened_anchor_boxes)
    box_targets = self.box_coder.encode(box_targets, anchor_box)

    # Unpacks labels into multi-level representations.
    cls_targets = unpack_targets(cls_targets, anchor_boxes)
    box_targets = unpack_targets(box_targets, anchor_boxes)
    attribute_targets = {
        k: unpack_targets(v, anchor_boxes) for k, v in att_targets.items()
    }

    return (
        cls_targets,
        box_targets,
        attribute_targets,
        cls_weights,
        box_weights,
    )


class RpnAnchorLabeler(AnchorLabeler):
  """Labeler for Region Proposal Network."""

  def __init__(
      self,
      match_threshold=0.7,
      unmatched_threshold=0.3,
      rpn_batch_size_per_im=256,
      rpn_fg_fraction=0.5,
  ):
    AnchorLabeler.__init__(
        self,
        match_threshold=match_threshold,
        unmatched_threshold=unmatched_threshold,
    )
    self._rpn_batch_size_per_im = rpn_batch_size_per_im
    self._rpn_fg_fraction = rpn_fg_fraction

  def _get_rpn_samples(self, match_results):
    """Computes anchor labels.

    This function performs subsampling for foreground (fg) and background (bg)
    anchors.
    Args:
      match_results: A integer tensor with shape [N] representing the matching
        results of anchors. (1) match_results[i]>=0, meaning that column i is
        matched with row match_results[i]. (2) match_results[i]=-1, meaning that
        column i is not matched. (3) match_results[i]=-2, meaning that column i
        is ignored.

    Returns:
      score_targets: a integer tensor with the a shape of [N].
        (1) score_targets[i]=1, the anchor is a positive sample.
        (2) score_targets[i]=0, negative. (3) score_targets[i]=-1, the anchor is
        don't care (ignore).
    """
    sampler = (
        balanced_positive_negative_sampler.BalancedPositiveNegativeSampler(
            positive_fraction=self._rpn_fg_fraction, is_static=False
        )
    )
    # indicator includes both positive and negative labels.
    # labels includes only positives labels.
    # positives = indicator & labels.
    # negatives = indicator & !labels.
    # ignore = !indicator.
    indicator = tf.greater(match_results, -2)
    labels = tf.greater(match_results, -1)

    samples = sampler.subsample(indicator, self._rpn_batch_size_per_im, labels)
    positive_labels = tf.where(
        tf.logical_and(samples, labels),
        tf.constant(2, dtype=tf.int32, shape=match_results.shape),
        tf.constant(0, dtype=tf.int32, shape=match_results.shape),
    )
    negative_labels = tf.where(
        tf.logical_and(samples, tf.logical_not(labels)),
        tf.constant(1, dtype=tf.int32, shape=match_results.shape),
        tf.constant(0, dtype=tf.int32, shape=match_results.shape),
    )
    ignore_labels = tf.fill(match_results.shape, -1)

    return (
        ignore_labels + positive_labels + negative_labels,
        positive_labels,
        negative_labels,
    )

  def label_anchors(  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
      self,
      anchor_boxes: Dict[str, tf.Tensor],
      gt_boxes: tf.Tensor,
      gt_labels: tf.Tensor,
  ) -> Tuple[Dict[str, tf.Tensor], Dict[str, tf.Tensor]]:
    """Labels anchors with ground truth inputs.

    Args:
      anchor_boxes: An ordered dictionary with keys [min_level, min_level+1,
        ..., max_level]. The values are tensor with shape [height_l, width_l,
        num_anchors_per_location * 4]. The height_l and width_l represent the
        dimension of the feature pyramid at l-th level. For each anchor box, the
        tensor stores [y0, x0, y1, x1] for the four corners.
      gt_boxes: A float tensor with shape [N, 4] representing ground-truth
        boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a
        box.
      gt_labels: A integer tensor with shape [N, 1] representing ground-truth
        classes.

    Returns:
      score_targets_dict: An ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location]. The height_l and
        width_l represent the dimension of class logits at l-th level.
      box_targets_dict: An ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location * 4]. The height_l
        and width_l represent the dimension of bounding box regression output at
        l-th level.
    """
    flattened_anchor_boxes = []
    for anchors in anchor_boxes.values():
      flattened_anchor_boxes.append(tf.reshape(anchors, [-1, 4]))
    flattened_anchor_boxes = tf.concat(flattened_anchor_boxes, axis=0)
    similarity_matrix = self.similarity_calc(flattened_anchor_boxes, gt_boxes)
    match_indices, match_indicators = self.matcher(similarity_matrix)
    box_mask = tf.tile(
        tf.expand_dims(tf.less_equal(match_indicators, 0), -1), [1, 4]
    )
    box_targets = self.target_gather(gt_boxes, match_indices, box_mask)
    box_targets_list = box_list.BoxList(box_targets)
    anchor_box_list = box_list.BoxList(flattened_anchor_boxes)
    box_targets = self.box_coder.encode(box_targets_list, anchor_box_list)

    # Zero out the unmatched and ignored regression targets.
    num_matches = match_indices.shape.as_list()[0] or tf.shape(match_indices)[0]
    unmatched_ignored_box_targets = tf.zeros([num_matches, 4], dtype=tf.float32)
    matched_anchors_mask = tf.greater_equal(match_indicators, 0)
    # To broadcast matched_anchors_mask to the same shape as
    # matched_reg_targets.
    matched_anchors_mask = tf.tile(
        tf.expand_dims(matched_anchors_mask, 1), [1, tf.shape(box_targets)[1]]
    )
    box_targets = tf.where(
        matched_anchors_mask, box_targets, unmatched_ignored_box_targets
    )

    # score_targets contains the subsampled positive and negative anchors.
    score_targets, _, _ = self._get_rpn_samples(match_indicators)

    # Unpacks labels.
    score_targets_dict = unpack_targets(score_targets, anchor_boxes)
    box_targets_dict = unpack_targets(box_targets, anchor_boxes)

    return score_targets_dict, box_targets_dict


def build_anchor_generator(
    min_level, max_level, num_scales, aspect_ratios, anchor_size
):
  """Build anchor generator from levels."""
  anchor_sizes = collections.OrderedDict()
  strides = collections.OrderedDict()
  scales = []
  for scale in range(num_scales):
    scales.append(2 ** (scale / float(num_scales)))
  for level in range(min_level, max_level + 1):
    stride = 2**level
    strides[str(level)] = stride
    anchor_sizes[str(level)] = anchor_size * stride
  anchor_gen = anchor_generator.AnchorGenerator(
      anchor_sizes=anchor_sizes,
      scales=scales,
      aspect_ratios=aspect_ratios,
      strides=strides,
  )
  return anchor_gen


def unpack_targets(
    targets: tf.Tensor, anchor_boxes_dict: Dict[str, tf.Tensor]
) -> Dict[str, tf.Tensor]:
  """Unpacks an array of labels into multi-scales labels.

  Args:
    targets: A tensor with shape [num_anchors, M] representing the packed
      targets with M values stored for each anchor.
    anchor_boxes_dict: An ordered dictionary with keys [min_level, min_level+1,
      ..., max_level]. The values are tensor with shape [height_l, width_l,
      num_anchors_per_location * 4]. The height_l and width_l represent the
      dimension of the feature pyramid at l-th level. For each anchor box, the
      tensor stores [y0, x0, y1, x1] for the four corners.

  Returns:
    unpacked_targets: An ordered dictionary with keys
      [min_level, min_level+1, ..., max_level]. The values are tensor with shape
      [height_l, width_l, num_anchors_per_location * M]. The height_l and
      width_l represent the dimension of the feature pyramid at l-th level. M is
      the number of values stored for each anchor.
  """
  unpacked_targets = collections.OrderedDict()
  count = 0
  for level, anchor_boxes in anchor_boxes_dict.items():
    feat_size_shape = anchor_boxes.shape.as_list()
    feat_size_y = feat_size_shape[0]
    feat_size_x = feat_size_shape[1]
    anchors_per_location = int(feat_size_shape[2] / 4)
    steps = feat_size_y * feat_size_x * anchors_per_location
    unpacked_targets[level] = tf.reshape(
        targets[count : count + steps], [feat_size_y, feat_size_x, -1]
    )
    count += steps
  return unpacked_targets