Spaces:
Runtime error
Runtime error
File size: 7,274 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multi scale anchor generator definition."""
import tensorflow as tf, tf_keras
# (TODO/tanzheny): consider having customized anchor offset.
class _SingleAnchorGenerator:
"""Utility to generate anchors for a single feature map.
Example:
```python
anchor_gen = _SingleAnchorGenerator(32, [.5, 1., 2.], stride=16)
anchors = anchor_gen([512, 512, 3])
```
"""
def __init__(self,
anchor_size,
scales,
aspect_ratios,
stride,
clip_boxes=False):
"""Constructs single scale anchor.
Args:
anchor_size: A single int represents the base anchor size. The anchor
height will be `anchor_size / sqrt(aspect_ratio)`, anchor width will be
`anchor_size * sqrt(aspect_ratio)`.
scales: A list/tuple, or a list/tuple of a list/tuple of positive
floats representing the actual anchor size to the base `anchor_size`.
aspect_ratios: a list/tuple of positive floats representing the ratio of
anchor width to anchor height.
stride: A single int represents the anchor stride size between center of
each anchor.
clip_boxes: Boolean to represent whether the anchor coordinates should be
clipped to the image size. Defaults to `False`.
Input shape: the size of the image, `[H, W, C]`
Output shape: the size of anchors, `[(H / stride) * (W / stride), 4]`
"""
self.anchor_size = anchor_size
self.scales = scales
self.aspect_ratios = aspect_ratios
self.stride = stride
self.clip_boxes = clip_boxes
def __call__(self, image_size):
image_height = tf.cast(image_size[0], tf.float32)
image_width = tf.cast(image_size[1], tf.float32)
k = len(self.scales) * len(self.aspect_ratios)
aspect_ratios_sqrt = tf.cast(tf.sqrt(self.aspect_ratios), dtype=tf.float32)
anchor_size = tf.cast(self.anchor_size, tf.float32)
# [K]
anchor_heights = []
anchor_widths = []
for scale in self.scales:
anchor_size_t = anchor_size * scale
anchor_height = anchor_size_t / aspect_ratios_sqrt
anchor_width = anchor_size_t * aspect_ratios_sqrt
anchor_heights.append(anchor_height)
anchor_widths.append(anchor_width)
anchor_heights = tf.concat(anchor_heights, axis=0)
anchor_widths = tf.concat(anchor_widths, axis=0)
half_anchor_heights = tf.reshape(0.5 * anchor_heights, [1, 1, k])
half_anchor_widths = tf.reshape(0.5 * anchor_widths, [1, 1, k])
stride = tf.cast(self.stride, tf.float32)
# [W]
cx = tf.range(0.5 * stride, image_width + 0.5 * stride, stride)
# [H]
cy = tf.range(0.5 * stride, image_height + 0.5 * stride, stride)
# [H, W]
cx_grid, cy_grid = tf.meshgrid(cx, cy)
# [H, W, 1]
cx_grid = tf.expand_dims(cx_grid, axis=-1)
cy_grid = tf.expand_dims(cy_grid, axis=-1)
# [H, W, K, 1]
y_min = tf.expand_dims(cy_grid - half_anchor_heights, axis=-1)
y_max = tf.expand_dims(cy_grid + half_anchor_heights, axis=-1)
x_min = tf.expand_dims(cx_grid - half_anchor_widths, axis=-1)
x_max = tf.expand_dims(cx_grid + half_anchor_widths, axis=-1)
if self.clip_boxes:
y_min = tf.maximum(tf.minimum(y_min, image_height), 0.)
y_max = tf.maximum(tf.minimum(y_max, image_height), 0.)
x_min = tf.maximum(tf.minimum(x_min, image_width), 0.)
x_max = tf.maximum(tf.minimum(x_max, image_width), 0.)
# [H, W, K, 4]
result = tf.concat([y_min, x_min, y_max, x_max], axis=-1)
shape = result.shape.as_list()
# [H, W, K * 4]
return tf.reshape(result, [shape[0], shape[1], shape[2] * shape[3]])
class AnchorGenerator():
"""Utility to generate anchors for a multiple feature maps.
Example:
```python
anchor_gen = AnchorGenerator([32, 64], [.5, 1., 2.],
strides=[16, 32])
anchors = anchor_gen([512, 512, 3])
```
"""
def __init__(self,
anchor_sizes,
scales,
aspect_ratios,
strides,
clip_boxes=False):
"""Constructs multiscale anchors.
Args:
anchor_sizes: A list of int represents the anchor size for each scale. The
anchor height will be `anchor_size / sqrt(aspect_ratio)`, anchor width
will be `anchor_size * sqrt(aspect_ratio)` for each scale.
scales: A list/tuple, or a list/tuple of a list/tuple of positive
floats representing the actual anchor size to the base `anchor_size`.
aspect_ratios: A list/tuple, or a list/tuple of a list/tuple of positive
floats representing the ratio of anchor width to anchor height.
strides: A list/tuple of ints represent the anchor stride size between
center of anchors at each scale.
clip_boxes: Boolean to represents whether the anchor coordinates should be
clipped to the image size. Defaults to `False`.
Input shape: the size of the image, `[H, W, C]`
Output shape: the size of anchors concat on each level, `[(H /
strides) * (W / strides), K * 4]`
"""
# aspect_ratio is a single list that is the same across all levels.
aspect_ratios = maybe_map_structure_for_anchor(aspect_ratios, anchor_sizes)
scales = maybe_map_structure_for_anchor(scales, anchor_sizes)
if isinstance(anchor_sizes, dict):
self.anchor_generators = {}
for k in anchor_sizes.keys():
self.anchor_generators[k] = _SingleAnchorGenerator(
anchor_sizes[k], scales[k], aspect_ratios[k], strides[k],
clip_boxes)
elif isinstance(anchor_sizes, (list, tuple)):
self.anchor_generators = []
for anchor_size, scale_list, ar_list, stride in zip(
anchor_sizes, scales, aspect_ratios, strides):
self.anchor_generators.append(
_SingleAnchorGenerator(anchor_size, scale_list, ar_list, stride,
clip_boxes))
def __call__(self, image_size):
anchor_generators = tf.nest.flatten(self.anchor_generators)
results = [anchor_gen(image_size) for anchor_gen in anchor_generators]
return tf.nest.pack_sequence_as(self.anchor_generators, results)
def maybe_map_structure_for_anchor(params, anchor_sizes):
"""broadcast the params to match anchor_sizes."""
if all(isinstance(param, (int, float)) for param in params):
if isinstance(anchor_sizes, (tuple, list)):
return [params] * len(anchor_sizes)
elif isinstance(anchor_sizes, dict):
return tf.nest.map_structure(lambda _: params, anchor_sizes)
else:
raise ValueError("the structure of `anchor_sizes` must be a tuple, "
"list, or dict, given {}".format(anchor_sizes))
else:
return params
|