File size: 7,274 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multi scale anchor generator definition."""

import tensorflow as tf, tf_keras


# (TODO/tanzheny): consider having customized anchor offset.
class _SingleAnchorGenerator:
  """Utility to generate anchors for a single feature map.

  Example:
  ```python
  anchor_gen = _SingleAnchorGenerator(32, [.5, 1., 2.], stride=16)
  anchors = anchor_gen([512, 512, 3])
  ```
  """

  def __init__(self,
               anchor_size,
               scales,
               aspect_ratios,
               stride,
               clip_boxes=False):
    """Constructs single scale anchor.

    Args:
      anchor_size: A single int represents the base anchor size. The anchor
        height will be `anchor_size / sqrt(aspect_ratio)`, anchor width will be
        `anchor_size * sqrt(aspect_ratio)`.
      scales: A list/tuple, or a list/tuple of a list/tuple of positive
        floats representing the actual anchor size to the base `anchor_size`.
      aspect_ratios: a list/tuple of positive floats representing the ratio of
        anchor width to anchor height.
      stride: A single int represents the anchor stride size between center of
        each anchor.
      clip_boxes: Boolean to represent whether the anchor coordinates should be
        clipped to the image size. Defaults to `False`.
    Input shape: the size of the image, `[H, W, C]`
    Output shape: the size of anchors, `[(H / stride) * (W / stride), 4]`
    """
    self.anchor_size = anchor_size
    self.scales = scales
    self.aspect_ratios = aspect_ratios
    self.stride = stride
    self.clip_boxes = clip_boxes

  def __call__(self, image_size):
    image_height = tf.cast(image_size[0], tf.float32)
    image_width = tf.cast(image_size[1], tf.float32)

    k = len(self.scales) * len(self.aspect_ratios)
    aspect_ratios_sqrt = tf.cast(tf.sqrt(self.aspect_ratios), dtype=tf.float32)
    anchor_size = tf.cast(self.anchor_size, tf.float32)

    # [K]
    anchor_heights = []
    anchor_widths = []
    for scale in self.scales:
      anchor_size_t = anchor_size * scale
      anchor_height = anchor_size_t / aspect_ratios_sqrt
      anchor_width = anchor_size_t * aspect_ratios_sqrt
      anchor_heights.append(anchor_height)
      anchor_widths.append(anchor_width)
    anchor_heights = tf.concat(anchor_heights, axis=0)
    anchor_widths = tf.concat(anchor_widths, axis=0)
    half_anchor_heights = tf.reshape(0.5 * anchor_heights, [1, 1, k])
    half_anchor_widths = tf.reshape(0.5 * anchor_widths, [1, 1, k])

    stride = tf.cast(self.stride, tf.float32)
    # [W]
    cx = tf.range(0.5 * stride, image_width + 0.5 * stride, stride)
    # [H]
    cy = tf.range(0.5 * stride, image_height + 0.5 * stride, stride)
    # [H, W]
    cx_grid, cy_grid = tf.meshgrid(cx, cy)
    # [H, W, 1]
    cx_grid = tf.expand_dims(cx_grid, axis=-1)
    cy_grid = tf.expand_dims(cy_grid, axis=-1)

    # [H, W, K, 1]
    y_min = tf.expand_dims(cy_grid - half_anchor_heights, axis=-1)
    y_max = tf.expand_dims(cy_grid + half_anchor_heights, axis=-1)
    x_min = tf.expand_dims(cx_grid - half_anchor_widths, axis=-1)
    x_max = tf.expand_dims(cx_grid + half_anchor_widths, axis=-1)

    if self.clip_boxes:
      y_min = tf.maximum(tf.minimum(y_min, image_height), 0.)
      y_max = tf.maximum(tf.minimum(y_max, image_height), 0.)
      x_min = tf.maximum(tf.minimum(x_min, image_width), 0.)
      x_max = tf.maximum(tf.minimum(x_max, image_width), 0.)

    # [H, W, K, 4]
    result = tf.concat([y_min, x_min, y_max, x_max], axis=-1)
    shape = result.shape.as_list()
    # [H, W, K * 4]
    return tf.reshape(result, [shape[0], shape[1], shape[2] * shape[3]])


class AnchorGenerator():
  """Utility to generate anchors for a multiple feature maps.

  Example:
  ```python
  anchor_gen = AnchorGenerator([32, 64], [.5, 1., 2.],
    strides=[16, 32])
  anchors = anchor_gen([512, 512, 3])
  ```

  """

  def __init__(self,
               anchor_sizes,
               scales,
               aspect_ratios,
               strides,
               clip_boxes=False):
    """Constructs multiscale anchors.

    Args:
      anchor_sizes: A list of int represents the anchor size for each scale. The
        anchor height will be `anchor_size / sqrt(aspect_ratio)`, anchor width
        will be `anchor_size * sqrt(aspect_ratio)` for each scale.
      scales: A list/tuple, or a list/tuple of a list/tuple of positive
        floats representing the actual anchor size to the base `anchor_size`.
      aspect_ratios: A list/tuple, or a list/tuple of a list/tuple of positive
        floats representing the ratio of anchor width to anchor height.
      strides: A list/tuple of ints represent the anchor stride size between
        center of anchors at each scale.
      clip_boxes: Boolean to represents whether the anchor coordinates should be
        clipped to the image size. Defaults to `False`.
    Input shape: the size of the image, `[H, W, C]`
    Output shape: the size of anchors concat on each level, `[(H /
      strides) * (W / strides), K * 4]`
    """
    # aspect_ratio is a single list that is the same across all levels.
    aspect_ratios = maybe_map_structure_for_anchor(aspect_ratios, anchor_sizes)
    scales = maybe_map_structure_for_anchor(scales, anchor_sizes)
    if isinstance(anchor_sizes, dict):
      self.anchor_generators = {}
      for k in anchor_sizes.keys():
        self.anchor_generators[k] = _SingleAnchorGenerator(
            anchor_sizes[k], scales[k], aspect_ratios[k], strides[k],
            clip_boxes)
    elif isinstance(anchor_sizes, (list, tuple)):
      self.anchor_generators = []
      for anchor_size, scale_list, ar_list, stride in zip(
          anchor_sizes, scales, aspect_ratios, strides):
        self.anchor_generators.append(
            _SingleAnchorGenerator(anchor_size, scale_list, ar_list, stride,
                                   clip_boxes))

  def __call__(self, image_size):
    anchor_generators = tf.nest.flatten(self.anchor_generators)
    results = [anchor_gen(image_size) for anchor_gen in anchor_generators]
    return tf.nest.pack_sequence_as(self.anchor_generators, results)


def maybe_map_structure_for_anchor(params, anchor_sizes):
  """broadcast the params to match anchor_sizes."""
  if all(isinstance(param, (int, float)) for param in params):
    if isinstance(anchor_sizes, (tuple, list)):
      return [params] * len(anchor_sizes)
    elif isinstance(anchor_sizes, dict):
      return tf.nest.map_structure(lambda _: params, anchor_sizes)
    else:
      raise ValueError("the structure of `anchor_sizes` must be a tuple, "
                       "list, or dict, given {}".format(anchor_sizes))
  else:
    return params