File size: 7,633 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for anchor.py."""

# Import libraries
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.ops import anchor


class AnchorTest(parameterized.TestCase, tf.test.TestCase):

  # The set of parameters are tailored for the MLPerf configuration, where
  # the number of anchors is 495132, rpn_batch_size_per_im=256, and
  # rpn_fg_fraction=0.5.
  @parameterized.parameters(
      (512, 25, 25, 25, 25, (512, 512)),
      (512, 25, 25, 25, 25, (512, 640)),
      (512, 25, 25, 25, 25, (640, 512)),
      (495132, 100, 100, 100, 100, (512, 512)),
      (495132, 200, 100, 128, 100, (512, 512)),
      (495132, 100, 120, 100, 120, (512, 512)),
      (495132, 100, 200, 100, 156, (512, 512)),
      (495132, 200, 200, 128, 128, (512, 512)),
  )
  def testAnchorRpnSample(self, num_anchors, num_positives,
                          num_negatives, expected_positives,
                          expected_negatives, image_size):
    match_results_np = np.empty([num_anchors])
    match_results_np.fill(-2)
    match_results_np[:num_positives] = 0
    match_results_np[num_positives:num_positives + num_negatives] = -1
    match_results = tf.convert_to_tensor(value=match_results_np, dtype=tf.int32)
    anchor_labeler = anchor.RpnAnchorLabeler(
        match_threshold=0.7,
        unmatched_threshold=0.3,
        rpn_batch_size_per_im=256,
        rpn_fg_fraction=0.5)
    rpn_sample_op = anchor_labeler._get_rpn_samples(match_results)
    labels = [v.numpy() for v in rpn_sample_op]
    self.assertLen(labels[0], num_anchors)
    positives = np.sum(np.array(labels[0]) == 1)
    negatives = np.sum(np.array(labels[0]) == 0)
    self.assertEqual(positives, expected_positives)
    self.assertEqual(negatives, expected_negatives)

  @parameterized.parameters(
      # Single scale anchor.
      (5, 5, 1, [1.0], 2.0,
       [[-16, -16, 48, 48], [-16, 16, 48, 80],
        [16, -16, 80, 48], [16, 16, 80, 80]]),
      # Multi scale anchor.
      (5, 6, 1, [1.0], 2.0,
       [[-16, -16, 48, 48], [-16, 16, 48, 80],
        [16, -16, 80, 48], [16, 16, 80, 80], [-32, -32, 96, 96]]),
      # # Multi aspect ratio anchor.
      (6, 6, 1, [1.0, 4.0, 0.25], 2.0,
       [[-32, -32, 96, 96], [-0, -96, 64, 160], [-96, -0, 160, 64]]),

  )
  def testAnchorGeneration(self, min_level, max_level, num_scales,
                           aspect_ratios, anchor_size, expected_boxes):
    image_size = [64, 64]
    anchors = anchor.Anchor(min_level, max_level, num_scales, aspect_ratios,
                            anchor_size, image_size)
    boxes = anchors.boxes.numpy()
    self.assertEqual(expected_boxes, boxes.tolist())

  @parameterized.parameters(
      # Single scale anchor.
      (5, 5, 1, [1.0], 2.0,
       [[-16, -16, 48, 48], [-16, 16, 48, 80],
        [16, -16, 80, 48], [16, 16, 80, 80]]),
      # Multi scale anchor.
      (5, 6, 1, [1.0], 2.0,
       [[-16, -16, 48, 48], [-16, 16, 48, 80],
        [16, -16, 80, 48], [16, 16, 80, 80], [-32, -32, 96, 96]]),
      # # Multi aspect ratio anchor.
      (6, 6, 1, [1.0, 4.0, 0.25], 2.0,
       [[-32, -32, 96, 96], [-0, -96, 64, 160], [-96, -0, 160, 64]]),

  )
  def testAnchorGenerationWithImageSizeAsTensor(self,
                                                min_level,
                                                max_level,
                                                num_scales,
                                                aspect_ratios,
                                                anchor_size,
                                                expected_boxes):
    image_size = tf.constant([64, 64], tf.int32)
    anchors = anchor.Anchor(min_level, max_level, num_scales, aspect_ratios,
                            anchor_size, image_size)
    boxes = anchors.boxes.numpy()
    self.assertEqual(expected_boxes, boxes.tolist())

  @parameterized.parameters(
      (3, 6, 2, [1.0], 2.0, False),
      (3, 6, 2, [1.0], 2.0, True),
  )
  def testLabelAnchors(self, min_level, max_level, num_scales, aspect_ratios,
                       anchor_size, has_attribute):
    input_size = [512, 512]
    ground_truth_class_id = 2
    attribute_name = 'depth'
    ground_truth_depth = 3.0

    # The matched anchors are the anchors used as ground truth and the anchors
    # at the next octave scale on the same location.
    expected_anchor_locations = [[0, 0, 0], [0, 0, 1]]
    anchor_gen = anchor.build_anchor_generator(min_level, max_level, num_scales,
                                               aspect_ratios, anchor_size)
    anchor_boxes = anchor_gen(input_size)
    anchor_labeler = anchor.AnchorLabeler()

    # Uses the first anchors as ground truth. The ground truth should map to
    # two anchors with two intermediate scales at the same location.
    gt_boxes = anchor_boxes['3'][0:1, 0, 0:4]
    gt_classes = tf.constant([[ground_truth_class_id]], dtype=tf.float32)
    gt_attributes = {
        attribute_name: tf.constant([[ground_truth_depth]], dtype=tf.float32)
    } if has_attribute else {}

    (cls_targets, box_targets, att_targets, _,
     box_weights) = anchor_labeler.label_anchors(anchor_boxes, gt_boxes,
                                                 gt_classes, gt_attributes)

    for k, v in cls_targets.items():
      cls_targets[k] = v.numpy()
    for k, v in box_targets.items():
      box_targets[k] = v.numpy()
    box_weights = box_weights.numpy()

    anchor_locations = np.vstack(
        np.where(cls_targets[str(min_level)] > -1)).transpose()
    self.assertAllClose(expected_anchor_locations, anchor_locations)
    # Two anchor boxes on min_level got matched to the gt_boxes.
    self.assertAllClose(tf.reduce_sum(box_weights), 2)

    if has_attribute:
      self.assertIn(attribute_name, att_targets)
      for k, v in att_targets[attribute_name].items():
        att_targets[attribute_name][k] = v.numpy()
      anchor_locations = np.vstack(
          np.where(
              att_targets[attribute_name][str(min_level)] > 0.0)).transpose()
      self.assertAllClose(expected_anchor_locations, anchor_locations)
    else:
      self.assertEmpty(att_targets)

  @parameterized.parameters(
      (3, 7, [.5, 1., 2.], 2, 8, (256, 256)),
      (3, 8, [1.], 3, 32, (512, 512)),
      (3, 3, [1.], 2, 4, (32, 32)),
  )
  def testEquivalentResult(self, min_level, max_level, aspect_ratios,
                           num_scales, anchor_size, image_size):
    anchor_gen = anchor.build_anchor_generator(
        min_level=min_level,
        max_level=max_level,
        num_scales=num_scales,
        aspect_ratios=aspect_ratios,
        anchor_size=anchor_size)
    anchors = anchor_gen(image_size)
    expected_anchor_gen = anchor.Anchor(min_level, max_level, num_scales,
                                        aspect_ratios, anchor_size, image_size)

    expected_anchors = expected_anchor_gen.multilevel_boxes
    for k in expected_anchors.keys():
      self.assertAllClose(expected_anchors[k], anchors[k])


if __name__ == '__main__':
  tf.test.main()