File size: 5,851 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Region Similarity Calculators."""

import tensorflow as tf, tf_keras


def area(box):
  """Computes area of boxes.

  B: batch_size
  N: number of boxes

  Args:
    box: a float Tensor with [N, 4], or [B, N, 4].

  Returns:
    a float Tensor with [N], or [B, N]
  """
  with tf.name_scope('Area'):
    y_min, x_min, y_max, x_max = tf.split(
        value=box, num_or_size_splits=4, axis=-1)
    return tf.squeeze((y_max - y_min) * (x_max - x_min), axis=-1)


def intersection(gt_boxes, boxes):
  """Compute pairwise intersection areas between boxes.

  B: batch_size
  N: number of groundtruth boxes.
  M: number of anchor boxes.

  Args:
    gt_boxes: a float Tensor with [N, 4], or [B, N, 4]
    boxes: a float Tensor with [M, 4], or [B, M, 4]

  Returns:
    a float Tensor with shape [N, M] or [B, N, M] representing pairwise
      intersections.
  """
  with tf.name_scope('Intersection'):
    y_min1, x_min1, y_max1, x_max1 = tf.split(
        value=gt_boxes, num_or_size_splits=4, axis=-1)
    y_min2, x_min2, y_max2, x_max2 = tf.split(
        value=boxes, num_or_size_splits=4, axis=-1)

    boxes_rank = len(boxes.shape)
    perm = [1, 0] if boxes_rank == 2 else [0, 2, 1]
    # [N, M] or [B, N, M]
    y_min_max = tf.minimum(y_max1, tf.transpose(y_max2, perm))
    y_max_min = tf.maximum(y_min1, tf.transpose(y_min2, perm))
    x_min_max = tf.minimum(x_max1, tf.transpose(x_max2, perm))
    x_max_min = tf.maximum(x_min1, tf.transpose(x_min2, perm))

    intersect_heights = y_min_max - y_max_min
    intersect_widths = x_min_max - x_max_min
    zeros_t = tf.cast(0, intersect_heights.dtype)
    intersect_heights = tf.maximum(zeros_t, intersect_heights)
    intersect_widths = tf.maximum(zeros_t, intersect_widths)
    return intersect_heights * intersect_widths


def iou(gt_boxes, boxes):
  """Computes pairwise intersection-over-union between box collections.

  Args:
    gt_boxes: a float Tensor with [N, 4].
    boxes: a float Tensor with [M, 4].

  Returns:
    a Tensor with shape [N, M] representing pairwise iou scores.
  """
  with tf.name_scope('IOU'):
    intersections = intersection(gt_boxes, boxes)
    gt_boxes_areas = area(gt_boxes)
    boxes_areas = area(boxes)
    boxes_rank = len(boxes_areas.shape)
    boxes_axis = 1 if (boxes_rank == 2) else 0
    gt_boxes_areas = tf.expand_dims(gt_boxes_areas, -1)
    boxes_areas = tf.expand_dims(boxes_areas, boxes_axis)
    unions = gt_boxes_areas + boxes_areas
    unions = unions - intersections
    return tf.where(
        tf.equal(intersections, 0.0), tf.zeros_like(intersections),
        tf.truediv(intersections, unions))


class IouSimilarity:
  """Class to compute similarity based on Intersection over Union (IOU) metric.

  """

  def __init__(self, mask_val=-1):
    self.mask_val = mask_val

  def __call__(self, boxes_1, boxes_2, boxes_1_masks=None, boxes_2_masks=None):
    """Compute pairwise IOU similarity between ground truth boxes and anchors.

    B: batch_size
    N: Number of groundtruth boxes.
    M: Number of anchor boxes.

    Args:
      boxes_1: a float Tensor with M or B * M boxes.
      boxes_2: a float Tensor with N or B * N boxes, the rank must be less than
        or equal to rank of `boxes_1`.
      boxes_1_masks: a boolean Tensor with M or B * M boxes. Optional.
      boxes_2_masks: a boolean Tensor with N or B * N boxes. Optional.

    Returns:
      A Tensor with shape [M, N] or [B, M, N] representing pairwise
        iou scores, anchor per row and groundtruth_box per colulmn.

    Input shape:
      boxes_1: [N, 4], or [B, N, 4]
      boxes_2: [M, 4], or [B, M, 4]
      boxes_1_masks: [N, 1], or [B, N, 1]
      boxes_2_masks: [M, 1], or [B, M, 1]

    Output shape:
      [M, N], or [B, M, N]
    """
    boxes_1 = tf.cast(boxes_1, tf.float32)
    boxes_2 = tf.cast(boxes_2, tf.float32)

    boxes_1_rank = len(boxes_1.shape)
    boxes_2_rank = len(boxes_2.shape)
    if boxes_1_rank < 2 or boxes_1_rank > 3:
      raise ValueError(
          '`groudtruth_boxes` must be rank 2 or 3, got {}'.format(boxes_1_rank))
    if boxes_2_rank < 2 or boxes_2_rank > 3:
      raise ValueError(
          '`anchors` must be rank 2 or 3, got {}'.format(boxes_2_rank))
    if boxes_1_rank < boxes_2_rank:
      raise ValueError('`groundtruth_boxes` is unbatched while `anchors` is '
                       'batched is not a valid use case, got groundtruth_box '
                       'rank {}, and anchors rank {}'.format(
                           boxes_1_rank, boxes_2_rank))

    result = iou(boxes_1, boxes_2)
    if boxes_1_masks is None and boxes_2_masks is None:
      return result
    background_mask = None
    mask_val_t = tf.cast(self.mask_val, result.dtype) * tf.ones_like(result)
    perm = [1, 0] if boxes_2_rank == 2 else [0, 2, 1]
    if boxes_1_masks is not None and boxes_2_masks is not None:
      background_mask = tf.logical_or(boxes_1_masks,
                                      tf.transpose(boxes_2_masks, perm))
    elif boxes_1_masks is not None:
      background_mask = boxes_1_masks
    else:
      background_mask = tf.logical_or(
          tf.zeros(tf.shape(boxes_2)[:-1], dtype=tf.bool),
          tf.transpose(boxes_2_masks, perm))
    return tf.where(background_mask, mask_val_t, result)