File size: 2,835 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for mask_ops.py."""

# Import libraries
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.ops import mask_ops


class MaskUtilsTest(tf.test.TestCase):

  def testPasteInstanceMasks(self):
    image_height = 10
    image_width = 10
    mask_height = 6
    mask_width = 6
    masks = np.random.randint(0, 255, (1, mask_height, mask_width))
    detected_boxes = np.array([[0.0, 2.0, mask_width, mask_height]])

    _ = mask_ops.paste_instance_masks(
        masks, detected_boxes, image_height, image_width)

  def testPasteInstanceMasksV2(self):
    image_height = 10
    image_width = 10
    mask_height = 6
    mask_width = 6
    masks = np.random.randint(0, 255, (1, mask_height, mask_width))
    detected_boxes = np.array([[0.0, 2.0, mask_width, mask_height]])

    image_masks = mask_ops.paste_instance_masks_v2(
        masks, detected_boxes, image_height, image_width)

    self.assertNDArrayNear(
        image_masks[:, 2:8, 0:6],
        np.array(masks > 0.5, dtype=np.uint8),
        1e-5)

  def testInstanceMasksOverlap(self):
    boxes = tf.constant([[[0, 0, 4, 4], [1, 1, 5, 5]]])
    masks = tf.constant([[
        [
            [0.9, 0.8, 0.1, 0.2],
            [0.8, 0.7, 0.3, 0.2],
            [0.6, 0.7, 0.4, 0.3],
            [1.0, 0.7, 0.1, 0.0],
        ],
        [
            [0.9, 0.8, 0.8, 0.7],
            [0.8, 0.7, 0.6, 0.8],
            [0.1, 0.2, 0.4, 0.3],
            [0.2, 0.1, 0.1, 0.0],
        ],
    ]])
    gt_boxes = tf.constant([[[1, 1, 5, 5], [2, 2, 6, 6]]])
    gt_masks = tf.constant([[
        [
            [1.0, 0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0, 0.0],
        ],
        [
            [1.0, 1.0, 1.0, 1.0],
            [1.0, 1.0, 1.0, 1.0],
            [1.0, 1.0, 1.0, 1.0],
            [1.0, 1.0, 1.0, 1.0],
        ],
    ]])
    iou, ioa = mask_ops.instance_masks_overlap(
        boxes,
        masks,
        gt_boxes,
        gt_masks,
        output_size=[10, 10],
    )
    self.assertAllClose(iou, [[[1 / 3, 0], [1 / 5, 1 / 7]]], atol=1e-4)
    self.assertAllClose(ioa, [[[3 / 8, 0], [1 / 4, 3 / 8]]], atol=1e-4)


if __name__ == '__main__':
  tf.test.main()