Spaces:
Runtime error
Runtime error
File size: 10,693 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Detection input and model functions for serving/inference."""
import math
from typing import Mapping, Tuple
from absl import logging
import tensorflow as tf, tf_keras
from official.vision import configs
from official.vision.modeling import factory
from official.vision.ops import anchor
from official.vision.ops import box_ops
from official.vision.ops import preprocess_ops
from official.vision.serving import export_base
class DetectionModule(export_base.ExportModule):
"""Detection Module."""
@property
def _padded_size(self):
if self.params.task.train_data.parser.pad:
return preprocess_ops.compute_padded_size(
self._input_image_size, 2**self.params.task.model.max_level
)
else:
return self._input_image_size
def _build_model(self):
nms_versions_supporting_dynamic_batch_size = {'batched', 'v2', 'v3'}
nms_version = self.params.task.model.detection_generator.nms_version
if (self._batch_size is None and
nms_version not in nms_versions_supporting_dynamic_batch_size):
logging.info('nms_version is set to `batched` because `%s` '
'does not support with dynamic batch size.', nms_version)
self.params.task.model.detection_generator.nms_version = 'batched'
input_specs = tf_keras.layers.InputSpec(shape=[
self._batch_size, *self._padded_size, 3])
if isinstance(self.params.task.model, configs.maskrcnn.MaskRCNN):
model = factory.build_maskrcnn(
input_specs=input_specs, model_config=self.params.task.model)
elif isinstance(self.params.task.model, configs.retinanet.RetinaNet):
model = factory.build_retinanet(
input_specs=input_specs, model_config=self.params.task.model)
else:
raise ValueError('Detection module not implemented for {} model.'.format(
type(self.params.task.model)))
return model
def _build_anchor_boxes(self):
"""Builds and returns anchor boxes."""
model_params = self.params.task.model
input_anchor = anchor.build_anchor_generator(
min_level=model_params.min_level,
max_level=model_params.max_level,
num_scales=model_params.anchor.num_scales,
aspect_ratios=model_params.anchor.aspect_ratios,
anchor_size=model_params.anchor.anchor_size)
return input_anchor(image_size=self._padded_size)
def _build_inputs(self, image):
"""Builds detection model inputs for serving."""
# Normalizes image with mean and std pixel values.
image = preprocess_ops.normalize_image(
image, offset=preprocess_ops.MEAN_RGB, scale=preprocess_ops.STDDEV_RGB)
image, image_info = preprocess_ops.resize_and_crop_image(
image,
self._input_image_size,
padded_size=self._padded_size,
aug_scale_min=1.0,
aug_scale_max=1.0,
keep_aspect_ratio=self.params.task.train_data.parser.keep_aspect_ratio,
)
anchor_boxes = self._build_anchor_boxes()
return image, anchor_boxes, image_info
def _normalize_coordinates(self, detections_dict, dict_keys, image_info):
"""Normalizes detection coordinates between 0 and 1.
Args:
detections_dict: Dictionary containing the output of the model prediction.
dict_keys: Key names corresponding to the tensors of the output dictionary
that we want to update.
image_info: Tensor containing the details of the image resizing.
Returns:
detections_dict: Updated detection dictionary.
"""
for key in dict_keys:
if key not in detections_dict:
continue
detection_boxes = detections_dict[key] / tf.tile(
image_info[:, 2:3, :], [1, 1, 2]
)
detections_dict[key] = box_ops.normalize_boxes(
detection_boxes, image_info[:, 0:1, :]
)
detections_dict[key] = tf.clip_by_value(detections_dict[key], 0.0, 1.0)
return detections_dict
def preprocess(
self, images: tf.Tensor
) -> Tuple[tf.Tensor, Mapping[str, tf.Tensor], tf.Tensor]:
"""Preprocesses inputs to be suitable for the model.
Args:
images: The images tensor.
Returns:
images: The images tensor cast to float.
anchor_boxes: Dict mapping anchor levels to anchor boxes.
image_info: Tensor containing the details of the image resizing.
"""
model_params = self.params.task.model
with tf.device('cpu:0'):
images = tf.cast(images, dtype=tf.float32)
# Tensor Specs for map_fn outputs (images, anchor_boxes, and image_info).
images_spec = tf.TensorSpec(shape=self._padded_size + [3],
dtype=tf.float32)
num_anchors = model_params.anchor.num_scales * len(
model_params.anchor.aspect_ratios) * 4
anchor_shapes = []
for level in range(model_params.min_level, model_params.max_level + 1):
anchor_level_spec = tf.TensorSpec(
shape=[
math.ceil(self._padded_size[0] / 2**level),
math.ceil(self._padded_size[1] / 2**level),
num_anchors,
],
dtype=tf.float32)
anchor_shapes.append((str(level), anchor_level_spec))
image_info_spec = tf.TensorSpec(shape=[4, 2], dtype=tf.float32)
images, anchor_boxes, image_info = tf.nest.map_structure(
tf.identity,
tf.map_fn(
self._build_inputs,
elems=images,
fn_output_signature=(images_spec, dict(anchor_shapes),
image_info_spec),
parallel_iterations=32))
return images, anchor_boxes, image_info
def serve(self, images: tf.Tensor):
"""Casts image to float and runs inference.
Args:
images: uint8 Tensor of shape [batch_size, None, None, 3]
Returns:
Tensor holding detection output logits.
"""
# Skip image preprocessing when input_type is tflite so it is compatible
# with TFLite quantization.
if self._input_type != 'tflite':
images, anchor_boxes, image_info = self.preprocess(images)
else:
with tf.device('cpu:0'):
anchor_boxes = self._build_anchor_boxes()
# image_info is a 3D tensor of shape [batch_size, 4, 2]. It is in the
# format of [[original_height, original_width],
# [desired_height, desired_width], [y_scale, x_scale],
# [y_offset, x_offset]]. When input_type is tflite, input image is
# supposed to be preprocessed already.
image_info = tf.convert_to_tensor([[
self._input_image_size, self._input_image_size, [1.0, 1.0], [0, 0]
]],
dtype=tf.float32)
input_image_shape = image_info[:, 1, :]
# To overcome keras.Model extra limitation to save a model with layers that
# have multiple inputs, we use `model.call` here to trigger the forward
# path. Note that, this disables some keras magics happens in `__call__`.
model_call_kwargs = {
'images': images,
'image_shape': input_image_shape,
'anchor_boxes': anchor_boxes,
'training': False,
}
if isinstance(self.params.task.model, configs.retinanet.RetinaNet):
model_call_kwargs['output_intermediate_features'] = (
self.params.task.export_config.output_intermediate_features
)
detections = self.model.call(**model_call_kwargs)
if self.params.task.model.detection_generator.apply_nms:
# For RetinaNet model, apply export_config.
# TODO(huizhongc): Add export_config to fasterrcnn and maskrcnn as needed.
if isinstance(self.params.task.model, configs.retinanet.RetinaNet):
export_config = self.params.task.export_config
# Normalize detection box coordinates to [0, 1].
if export_config.output_normalized_coordinates:
keys = ['detection_boxes', 'detection_outer_boxes']
detections = self._normalize_coordinates(detections, keys, image_info)
# Cast num_detections and detection_classes to float. This allows the
# model inference to work on chain (go/chain) as chain requires floating
# point outputs.
if export_config.cast_num_detections_to_float:
detections['num_detections'] = tf.cast(
detections['num_detections'], dtype=tf.float32)
if export_config.cast_detection_classes_to_float:
detections['detection_classes'] = tf.cast(
detections['detection_classes'], dtype=tf.float32)
final_outputs = {
'detection_boxes': detections['detection_boxes'],
'detection_scores': detections['detection_scores'],
'detection_classes': detections['detection_classes'],
'num_detections': detections['num_detections']
}
if 'detection_outer_boxes' in detections:
final_outputs['detection_outer_boxes'] = (
detections['detection_outer_boxes'])
else:
# For RetinaNet model, apply export_config.
if isinstance(self.params.task.model, configs.retinanet.RetinaNet):
export_config = self.params.task.export_config
# Normalize detection box coordinates to [0, 1].
if export_config.output_normalized_coordinates:
keys = ['decoded_boxes']
detections = self._normalize_coordinates(detections, keys, image_info)
final_outputs = {
'decoded_boxes': detections['decoded_boxes'],
'decoded_box_scores': detections['decoded_box_scores']
}
if 'detection_masks' in detections.keys():
final_outputs['detection_masks'] = detections['detection_masks']
if (
isinstance(self.params.task.model, configs.retinanet.RetinaNet)
and self.params.task.export_config.output_intermediate_features
):
final_outputs.update(
{
k: v
for k, v in detections.items()
if k.startswith('backbone_') or k.startswith('decoder_')
}
)
if self.params.task.model.detection_generator.nms_version != 'tflite':
final_outputs.update({'image_info': image_info})
return final_outputs
|