Spaces:
Runtime error
Runtime error
File size: 9,165 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test for image detection export lib."""
import io
import os
from absl.testing import parameterized
import numpy as np
from PIL import Image
import tensorflow as tf, tf_keras
from official.core import exp_factory
from official.vision import registry_imports # pylint: disable=unused-import
from official.vision.serving import detection
class DetectionExportTest(tf.test.TestCase, parameterized.TestCase):
def _get_detection_module(
self,
experiment_name,
input_type,
outer_boxes_scale=1.0,
apply_nms=True,
normalized_coordinates=False,
nms_version='batched',
output_intermediate_features=False,
):
params = exp_factory.get_exp_config(experiment_name)
params.task.model.outer_boxes_scale = outer_boxes_scale
params.task.model.backbone.resnet.model_id = 18
params.task.model.detection_generator.apply_nms = apply_nms
if normalized_coordinates:
params.task.export_config.output_normalized_coordinates = True
params.task.model.detection_generator.nms_version = nms_version
if output_intermediate_features:
params.task.export_config.output_intermediate_features = True
detection_module = detection.DetectionModule(
params,
batch_size=1,
input_image_size=[640, 640],
input_type=input_type)
return detection_module
def _export_from_module(self, module, input_type, save_directory):
signatures = module.get_inference_signatures(
{input_type: 'serving_default'})
tf.saved_model.save(module, save_directory, signatures=signatures)
def _get_dummy_input(self, input_type, batch_size, image_size):
"""Gets dummy input for the given input type."""
h, w = image_size
if input_type == 'image_tensor':
return tf.zeros((batch_size, h, w, 3), dtype=np.uint8)
elif input_type == 'image_bytes':
image = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8))
byte_io = io.BytesIO()
image.save(byte_io, 'PNG')
return [byte_io.getvalue() for b in range(batch_size)]
elif input_type == 'tf_example':
image_tensor = tf.zeros((h, w, 3), dtype=tf.uint8)
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy()
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
tf.train.Feature(
bytes_list=tf.train.BytesList(value=[encoded_jpeg])),
})).SerializeToString()
return [example for b in range(batch_size)]
elif input_type == 'tflite':
return tf.zeros((batch_size, h, w, 3), dtype=np.float32)
@parameterized.parameters(
('image_tensor', 'fasterrcnn_resnetfpn_coco', [384, 384]),
('image_bytes', 'fasterrcnn_resnetfpn_coco', [640, 640]),
('tf_example', 'fasterrcnn_resnetfpn_coco', [640, 640]),
('tflite', 'fasterrcnn_resnetfpn_coco', [640, 640]),
('image_tensor', 'maskrcnn_resnetfpn_coco', [640, 640]),
('image_bytes', 'maskrcnn_resnetfpn_coco', [640, 384]),
('tf_example', 'maskrcnn_resnetfpn_coco', [640, 640]),
('tflite', 'maskrcnn_resnetfpn_coco', [640, 640]),
('image_tensor', 'retinanet_resnetfpn_coco', [640, 640]),
('image_bytes', 'retinanet_resnetfpn_coco', [640, 640]),
('tf_example', 'retinanet_resnetfpn_coco', [384, 640]),
('tflite', 'retinanet_resnetfpn_coco', [640, 640]),
('image_tensor', 'retinanet_resnetfpn_coco', [384, 384]),
('image_bytes', 'retinanet_spinenet_coco', [640, 640]),
('tf_example', 'retinanet_spinenet_coco', [640, 384]),
('tflite', 'retinanet_spinenet_coco', [640, 640]),
('image_tensor', 'fasterrcnn_resnetfpn_coco', [384, 384], 1.1),
('tf_example', 'maskrcnn_resnetfpn_coco', [640, 640], 1.1),
('image_tensor', 'fasterrcnn_resnetfpn_coco', [384, 384], 1.1, 'v2'),
)
def test_export(
self,
input_type,
experiment_name,
image_size,
outer_boxes_scale=1.0,
nms_version='batched',
):
tmp_dir = self.get_temp_dir()
module = self._get_detection_module(
experiment_name, input_type, outer_boxes_scale, nms_version)
self._export_from_module(module, input_type, tmp_dir)
self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb')))
self.assertTrue(
os.path.exists(os.path.join(tmp_dir, 'variables', 'variables.index')))
self.assertTrue(
os.path.exists(
os.path.join(tmp_dir, 'variables',
'variables.data-00000-of-00001')))
imported = tf.saved_model.load(tmp_dir)
detection_fn = imported.signatures['serving_default']
images = self._get_dummy_input(
input_type, batch_size=1, image_size=image_size)
signatures = module.get_inference_signatures(
{input_type: 'serving_default'})
expected_outputs = signatures['serving_default'](tf.constant(images))
outputs = detection_fn(tf.constant(images))
self.assertAllEqual(outputs['detection_boxes'].numpy(),
expected_outputs['detection_boxes'].numpy())
# Outer boxes have not been supported in RetinaNet models.
if 'retinanet' not in experiment_name:
if module.params.task.model.include_mask and outer_boxes_scale > 1.0:
self.assertAllEqual(outputs['detection_outer_boxes'].numpy(),
expected_outputs['detection_outer_boxes'].numpy())
self.assertAllEqual(outputs['detection_classes'].numpy(),
expected_outputs['detection_classes'].numpy())
self.assertAllEqual(outputs['detection_scores'].numpy(),
expected_outputs['detection_scores'].numpy())
self.assertAllEqual(outputs['num_detections'].numpy(),
expected_outputs['num_detections'].numpy())
@parameterized.parameters(('retinanet_resnetfpn_coco',),
('maskrcnn_spinenet_coco',))
def test_build_model_pass_with_none_batch_size(self, experiment_type):
params = exp_factory.get_exp_config(experiment_type)
detection.DetectionModule(
params, batch_size=None, input_image_size=[640, 640])
def test_export_retinanet_with_intermediate_features(self):
tmp_dir = self.get_temp_dir()
input_type = 'image_tensor'
module = self._get_detection_module(
'retinanet_resnetfpn_coco',
input_type,
output_intermediate_features=True,
)
self._export_from_module(module, input_type, tmp_dir)
imported = tf.saved_model.load(tmp_dir)
detection_fn = imported.signatures['serving_default']
images = self._get_dummy_input(
input_type, batch_size=1, image_size=[384, 384]
)
outputs = detection_fn(tf.constant(images))
self.assertContainsSubset(
{
'backbone_3',
'backbone_4',
'backbone_5',
'decoder_3',
'decoder_4',
'decoder_5',
'decoder_6',
'decoder_7',
},
outputs.keys(),
)
@parameterized.parameters(
('image_tensor', 'retinanet_resnetfpn_coco', [640, 640]),
('image_bytes', 'retinanet_resnetfpn_coco', [640, 640]),
('tf_example', 'retinanet_resnetfpn_coco', [384, 640]),
('tflite', 'retinanet_resnetfpn_coco', [640, 640]),
('image_tensor', 'retinanet_resnetfpn_coco', [384, 384]),
('image_bytes', 'retinanet_spinenet_coco', [640, 640]),
('tf_example', 'retinanet_spinenet_coco', [640, 384]),
('tflite', 'retinanet_spinenet_coco', [640, 640]),
)
def test_export_normalized_coordinates_no_nms(
self,
input_type,
experiment_name,
image_size,
):
tmp_dir = self.get_temp_dir()
module = self._get_detection_module(
experiment_name,
input_type,
apply_nms=False,
normalized_coordinates=True,
)
self._export_from_module(module, input_type, tmp_dir)
imported = tf.saved_model.load(tmp_dir)
detection_fn = imported.signatures['serving_default']
images = self._get_dummy_input(
input_type, batch_size=1, image_size=image_size
)
outputs = detection_fn(tf.constant(images))
min_values = tf.math.reduce_min(outputs['decoded_boxes'])
max_values = tf.math.reduce_max(outputs['decoded_boxes'])
self.assertAllGreaterEqual(
min_values.numpy(), tf.zeros_like(min_values).numpy()
)
self.assertAllLessEqual(
max_values.numpy(), tf.ones_like(max_values).numpy()
)
if __name__ == '__main__':
tf.test.main()
|