Spaces:
Runtime error
Runtime error
File size: 2,880 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.core.export_base_v2."""
import os
import tensorflow as tf, tf_keras
from official.core import export_base
from official.vision.serving import export_base_v2
class TestModel(tf_keras.Model):
def __init__(self):
super().__init__()
self._dense = tf_keras.layers.Dense(2)
def call(self, inputs):
return {'outputs': self._dense(inputs)}
class ExportBaseTest(tf.test.TestCase):
def test_preprocessor(self):
tmp_dir = self.get_temp_dir()
model = TestModel()
inputs = tf.ones([2, 4], tf.float32)
preprocess_fn = lambda inputs: 2 * inputs
module = export_base_v2.ExportModule(
params=None,
input_signature=tf.TensorSpec(shape=[2, 4]),
model=model,
preprocessor=preprocess_fn)
expected_output = model(preprocess_fn(inputs))
ckpt_path = tf.train.Checkpoint(model=model).save(
os.path.join(tmp_dir, 'ckpt'))
export_dir = export_base.export(
module, ['serving_default'],
export_savedmodel_dir=tmp_dir,
checkpoint_path=ckpt_path,
timestamped=False)
imported = tf.saved_model.load(export_dir)
output = imported.signatures['serving_default'](inputs)
print('output', output)
self.assertAllClose(
output['outputs'].numpy(), expected_output['outputs'].numpy())
def test_postprocessor(self):
tmp_dir = self.get_temp_dir()
model = TestModel()
inputs = tf.ones([2, 4], tf.float32)
postprocess_fn = lambda logits: {'outputs': 2 * logits['outputs']}
module = export_base_v2.ExportModule(
params=None,
model=model,
input_signature=tf.TensorSpec(shape=[2, 4]),
postprocessor=postprocess_fn)
expected_output = postprocess_fn(model(inputs))
ckpt_path = tf.train.Checkpoint(model=model).save(
os.path.join(tmp_dir, 'ckpt'))
export_dir = export_base.export(
module, ['serving_default'],
export_savedmodel_dir=tmp_dir,
checkpoint_path=ckpt_path,
timestamped=False)
imported = tf.saved_model.load(export_dir)
output = imported.signatures['serving_default'](inputs)
self.assertAllClose(
output['outputs'].numpy(), expected_output['outputs'].numpy())
if __name__ == '__main__':
tf.test.main()
|