Spaces:
Runtime error
Runtime error
File size: 6,884 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Video classification input and model functions for serving/inference."""
from typing import Mapping, Dict, Text
import tensorflow as tf, tf_keras
from official.vision.dataloaders import video_input
from official.vision.serving import export_base
from official.vision.tasks import video_classification
class VideoClassificationModule(export_base.ExportModule):
"""Video classification Module."""
def _build_model(self):
input_params = self.params.task.train_data
self._num_frames = input_params.feature_shape[0]
self._stride = input_params.temporal_stride
self._min_resize = input_params.min_image_size
self._crop_size = input_params.feature_shape[1]
self._output_audio = input_params.output_audio
task = video_classification.VideoClassificationTask(self.params.task)
return task.build_model()
def _decode_tf_example(self, encoded_inputs: tf.Tensor):
sequence_description = {
# Each image is a string encoding JPEG.
video_input.IMAGE_KEY:
tf.io.FixedLenSequenceFeature((), tf.string),
}
if self._output_audio:
sequence_description[self._params.task.validation_data.audio_feature] = (
tf.io.VarLenFeature(dtype=tf.float32))
_, decoded_tensors = tf.io.parse_single_sequence_example(
encoded_inputs, {}, sequence_description)
for key, value in decoded_tensors.items():
if isinstance(value, tf.SparseTensor):
decoded_tensors[key] = tf.sparse.to_dense(value)
return decoded_tensors
def _preprocess_image(self, image):
image = video_input.process_image(
image=image,
is_training=False,
num_frames=self._num_frames,
stride=self._stride,
num_test_clips=1,
min_resize=self._min_resize,
crop_size=self._crop_size,
num_crops=1)
image = tf.cast(image, tf.float32) # Use config.
features = {'image': image}
return features
def _preprocess_audio(self, audio):
features = {}
audio = tf.cast(audio, dtype=tf.float32) # Use config.
audio = video_input.preprocess_ops_3d.sample_sequence(
audio, 20, random=False, stride=1)
audio = tf.ensure_shape(
audio, self._params.task.validation_data.audio_feature_shape)
features['audio'] = audio
return features
@tf.function
def inference_from_tf_example(
self, encoded_inputs: tf.Tensor) -> Mapping[str, tf.Tensor]:
with tf.device('cpu:0'):
if self._output_audio:
inputs = tf.map_fn(
self._decode_tf_example, (encoded_inputs),
fn_output_signature={
video_input.IMAGE_KEY: tf.string,
self._params.task.validation_data.audio_feature: tf.float32
})
return self.serve(inputs['image'], inputs['audio'])
else:
inputs = tf.map_fn(
self._decode_tf_example, (encoded_inputs),
fn_output_signature={
video_input.IMAGE_KEY: tf.string,
})
return self.serve(inputs[video_input.IMAGE_KEY], tf.zeros([1, 1]))
@tf.function
def inference_from_image_tensors(
self, input_frames: tf.Tensor) -> Mapping[str, tf.Tensor]:
return self.serve(input_frames, tf.zeros([1, 1]))
@tf.function
def inference_from_image_audio_tensors(
self, input_frames: tf.Tensor,
input_audio: tf.Tensor) -> Mapping[str, tf.Tensor]:
return self.serve(input_frames, input_audio)
@tf.function
def inference_from_image_bytes(self, inputs: tf.Tensor):
raise NotImplementedError(
'Video classification do not support image bytes input.')
def serve(self, input_frames: tf.Tensor, input_audio: tf.Tensor):
"""Cast image to float and run inference.
Args:
input_frames: uint8 Tensor of shape [batch_size, None, None, 3]
input_audio: float32
Returns:
Tensor holding classification output logits.
"""
with tf.device('cpu:0'):
inputs = tf.map_fn(
self._preprocess_image, (input_frames),
fn_output_signature={
'image': tf.float32,
})
if self._output_audio:
inputs.update(
tf.map_fn(
self._preprocess_audio, (input_audio),
fn_output_signature={'audio': tf.float32}))
logits = self.inference_step(inputs)
if self.params.task.train_data.is_multilabel:
probs = tf.math.sigmoid(logits)
else:
probs = tf.nn.softmax(logits)
return {'logits': logits, 'probs': probs}
def get_inference_signatures(self, function_keys: Dict[Text, Text]):
"""Gets defined function signatures.
Args:
function_keys: A dictionary with keys as the function to create signature
for and values as the signature keys when returns.
Returns:
A dictionary with key as signature key and value as concrete functions
that can be used for tf.saved_model.save.
"""
signatures = {}
for key, def_name in function_keys.items():
if key == 'image_tensor':
input_signature = tf.TensorSpec(
shape=[self._batch_size] + self._input_image_size + [3],
dtype=tf.uint8,
name='INPUT_FRAMES')
signatures[
def_name] = self.inference_from_image_tensors.get_concrete_function(
input_signature)
elif key == 'frames_audio':
input_signature = [
tf.TensorSpec(
shape=[self._batch_size] + self._input_image_size + [3],
dtype=tf.uint8,
name='INPUT_FRAMES'),
tf.TensorSpec(
shape=[self._batch_size] +
self.params.task.train_data.audio_feature_shape,
dtype=tf.float32,
name='INPUT_AUDIO')
]
signatures[
def_name] = self.inference_from_image_audio_tensors.get_concrete_function(
input_signature)
elif key == 'serve_examples' or key == 'tf_example':
input_signature = tf.TensorSpec(
shape=[self._batch_size], dtype=tf.string)
signatures[
def_name] = self.inference_from_tf_example.get_concrete_function(
input_signature)
else:
raise ValueError('Unrecognized `input_type`')
return signatures
|