Spaces:
Runtime error
Runtime error
File size: 16,699 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image classification task definition."""
from typing import Any, List, Optional, Tuple
from absl import logging
import tensorflow as tf, tf_keras
from official.common import dataset_fn
from official.core import base_task
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.configs import image_classification as exp_cfg
from official.vision.dataloaders import classification_input
from official.vision.dataloaders import input_reader
from official.vision.dataloaders import input_reader_factory
from official.vision.dataloaders import tfds_factory
from official.vision.modeling import factory
from official.vision.ops import augment
_EPSILON = 1e-6
@task_factory.register_task_cls(exp_cfg.ImageClassificationTask)
class ImageClassificationTask(base_task.Task):
"""A task for image classification."""
def build_model(self):
"""Builds classification model."""
input_specs = tf_keras.layers.InputSpec(
shape=[None] + self.task_config.model.input_size)
l2_weight_decay = self.task_config.losses.l2_weight_decay
# Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
# (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
# (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
l2_regularizer = (tf_keras.regularizers.l2(
l2_weight_decay / 2.0) if l2_weight_decay else None)
model = factory.build_classification_model(
input_specs=input_specs,
model_config=self.task_config.model,
l2_regularizer=l2_regularizer)
if self.task_config.freeze_backbone:
model.backbone.trainable = False
# Builds the model
dummy_inputs = tf_keras.Input(self.task_config.model.input_size)
_ = model(dummy_inputs, training=False)
return model
def initialize(self, model: tf_keras.Model):
"""Loads pretrained checkpoint."""
if not self.task_config.init_checkpoint:
return
ckpt_dir_or_file = self.task_config.init_checkpoint
if tf.io.gfile.isdir(ckpt_dir_or_file):
ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
# Restoring checkpoint.
if self.task_config.init_checkpoint_modules == 'all':
ckpt = tf.train.Checkpoint(model=model)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
elif self.task_config.init_checkpoint_modules == 'backbone':
ckpt = tf.train.Checkpoint(backbone=model.backbone)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
else:
raise ValueError(
"Only 'all' or 'backbone' can be used to initialize the model.")
logging.info('Finished loading pretrained checkpoint from %s',
ckpt_dir_or_file)
def build_inputs(
self,
params: exp_cfg.DataConfig,
input_context: Optional[tf.distribute.InputContext] = None
) -> tf.data.Dataset:
"""Builds classification input."""
num_classes = self.task_config.model.num_classes
input_size = self.task_config.model.input_size
image_field_key = self.task_config.train_data.image_field_key
label_field_key = self.task_config.train_data.label_field_key
is_multilabel = self.task_config.train_data.is_multilabel
if params.tfds_name:
decoder = tfds_factory.get_classification_decoder(params.tfds_name)
else:
decoder = classification_input.Decoder(
image_field_key=image_field_key, label_field_key=label_field_key,
is_multilabel=is_multilabel)
parser = classification_input.Parser(
output_size=input_size[:2],
num_classes=num_classes,
image_field_key=image_field_key,
label_field_key=label_field_key,
decode_jpeg_only=params.decode_jpeg_only,
aug_rand_hflip=params.aug_rand_hflip,
aug_crop=params.aug_crop,
aug_type=params.aug_type,
color_jitter=params.color_jitter,
random_erasing=params.random_erasing,
is_multilabel=is_multilabel,
dtype=params.dtype,
center_crop_fraction=params.center_crop_fraction,
tf_resize_method=params.tf_resize_method,
three_augment=params.three_augment)
postprocess_fn = None
if params.mixup_and_cutmix:
postprocess_fn = augment.MixupAndCutmix(
mixup_alpha=params.mixup_and_cutmix.mixup_alpha,
cutmix_alpha=params.mixup_and_cutmix.cutmix_alpha,
prob=params.mixup_and_cutmix.prob,
label_smoothing=params.mixup_and_cutmix.label_smoothing,
num_classes=num_classes)
def sample_fn(repeated_augment, dataset):
weights = [1 / repeated_augment] * repeated_augment
dataset = tf.data.Dataset.sample_from_datasets(
datasets=[dataset] * repeated_augment,
weights=weights,
seed=None,
stop_on_empty_dataset=True,
)
return dataset
is_repeated_augment = (
params.is_training
and params.repeated_augment is not None
)
reader = input_reader_factory.input_reader_generator(
params,
dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
decoder_fn=decoder.decode,
combine_fn=input_reader.create_combine_fn(params),
parser_fn=parser.parse_fn(params.is_training),
postprocess_fn=postprocess_fn,
sample_fn=(lambda ds: sample_fn(params.repeated_augment, ds))
if is_repeated_augment
else None,
)
dataset = reader.read(input_context=input_context)
return dataset
def build_losses(self,
labels: tf.Tensor,
model_outputs: tf.Tensor,
aux_losses: Optional[Any] = None) -> tf.Tensor:
"""Builds sparse categorical cross entropy loss.
Args:
labels: Input groundtruth labels.
model_outputs: Output logits of the classifier.
aux_losses: The auxiliarly loss tensors, i.e. `losses` in tf_keras.Model.
Returns:
The total loss tensor.
"""
losses_config = self.task_config.losses
is_multilabel = self.task_config.train_data.is_multilabel
if not is_multilabel:
if losses_config.use_binary_cross_entropy:
total_loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=labels, logits=model_outputs
)
# Average over all object classes inside an image.
total_loss = tf.reduce_mean(total_loss, axis=-1)
elif losses_config.one_hot:
total_loss = tf_keras.losses.categorical_crossentropy(
labels,
model_outputs,
from_logits=True,
label_smoothing=losses_config.label_smoothing)
elif losses_config.soft_labels:
total_loss = tf.nn.softmax_cross_entropy_with_logits(
labels, model_outputs)
else:
total_loss = tf_keras.losses.sparse_categorical_crossentropy(
labels, model_outputs, from_logits=True)
else:
# Multi-label binary cross entropy loss. This will apply `reduce_mean`.
total_loss = tf_keras.losses.binary_crossentropy(
labels,
model_outputs,
from_logits=True,
label_smoothing=losses_config.label_smoothing,
axis=-1)
# Multiple num_classes to behave like `reduce_sum`.
total_loss = total_loss * self.task_config.model.num_classes
total_loss = tf_utils.safe_mean(total_loss)
if aux_losses:
total_loss += tf.add_n(aux_losses)
total_loss = losses_config.loss_weight * total_loss
return total_loss
def build_metrics(self,
training: bool = True) -> List[tf_keras.metrics.Metric]:
"""Gets streaming metrics for training/validation."""
is_multilabel = self.task_config.train_data.is_multilabel
if not is_multilabel:
k = self.task_config.evaluation.top_k
if (self.task_config.losses.one_hot or
self.task_config.losses.soft_labels):
metrics = [
tf_keras.metrics.CategoricalAccuracy(name='accuracy'),
tf_keras.metrics.TopKCategoricalAccuracy(
k=k, name='top_{}_accuracy'.format(k))]
if hasattr(
self.task_config.evaluation, 'precision_and_recall_thresholds'
) and self.task_config.evaluation.precision_and_recall_thresholds:
thresholds = self.task_config.evaluation.precision_and_recall_thresholds # pylint: disable=line-too-long
# pylint:disable=g-complex-comprehension
metrics += [
tf_keras.metrics.Precision(
thresholds=th,
name='precision_at_threshold_{}'.format(th),
top_k=1) for th in thresholds
]
metrics += [
tf_keras.metrics.Recall(
thresholds=th,
name='recall_at_threshold_{}'.format(th),
top_k=1) for th in thresholds
]
# Add per-class precision and recall.
if hasattr(
self.task_config.evaluation,
'report_per_class_precision_and_recall'
) and self.task_config.evaluation.report_per_class_precision_and_recall:
for class_id in range(self.task_config.model.num_classes):
metrics += [
tf_keras.metrics.Precision(
thresholds=th,
class_id=class_id,
name=f'precision_at_threshold_{th}/{class_id}',
top_k=1) for th in thresholds
]
metrics += [
tf_keras.metrics.Recall(
thresholds=th,
class_id=class_id,
name=f'recall_at_threshold_{th}/{class_id}',
top_k=1) for th in thresholds
]
# pylint:enable=g-complex-comprehension
else:
metrics = [
tf_keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
tf_keras.metrics.SparseTopKCategoricalAccuracy(
k=k, name='top_{}_accuracy'.format(k))]
else:
metrics = []
# These metrics destablize the training if included in training. The jobs
# fail due to OOM.
# TODO(arashwan): Investigate adding following metric to train.
if not training:
metrics = [
tf_keras.metrics.AUC(
name='globalPR-AUC',
curve='PR',
multi_label=False,
from_logits=True),
tf_keras.metrics.AUC(
name='meanPR-AUC',
curve='PR',
multi_label=True,
num_labels=self.task_config.model.num_classes,
from_logits=True),
]
return metrics
def train_step(self,
inputs: Tuple[Any, Any],
model: tf_keras.Model,
optimizer: tf_keras.optimizers.Optimizer,
metrics: Optional[List[Any]] = None):
"""Does forward and backward.
Args:
inputs: A tuple of input tensors of (features, labels).
model: A tf_keras.Model instance.
optimizer: The optimizer for this training step.
metrics: A nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
features, labels = inputs
is_multilabel = self.task_config.train_data.is_multilabel
if self.task_config.losses.one_hot and not is_multilabel:
labels = tf.one_hot(labels, self.task_config.model.num_classes)
if self.task_config.losses.use_binary_cross_entropy:
# BCE loss converts the multiclass classification to multilabel. The
# corresponding label value of objects present in the image would be one.
if self.task_config.train_data.mixup_and_cutmix is not None:
# label values below off_value_threshold would be mapped to zero and
# above that would be mapped to one. Negative labels are guaranteed to
# have value less than or equal value of the off_value from mixup.
off_value_threshold = (
self.task_config.train_data.mixup_and_cutmix.label_smoothing
/ self.task_config.model.num_classes
)
labels = tf.where(
tf.less(labels, off_value_threshold + _EPSILON), 0.0, 1.0)
elif tf.rank(labels) == 1:
labels = tf.one_hot(labels, self.task_config.model.num_classes)
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
with tf.GradientTape() as tape:
outputs = model(features, training=True)
# Casting output layer as float32 is necessary when mixed_precision is
# mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
outputs = tf.nest.map_structure(
lambda x: tf.cast(x, tf.float32), outputs)
# Computes per-replica loss.
loss = self.build_losses(
model_outputs=outputs,
labels=labels,
aux_losses=model.losses)
# Scales loss as the default gradients allreduce performs sum inside the
# optimizer.
scaled_loss = loss / num_replicas
# For mixed_precision policy, when LossScaleOptimizer is used, loss is
# scaled for numerical stability.
if isinstance(
optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
scaled_loss = optimizer.get_scaled_loss(scaled_loss)
tvars = model.trainable_variables
grads = tape.gradient(scaled_loss, tvars)
# Scales back gradient before apply_gradients when LossScaleOptimizer is
# used.
if isinstance(
optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
grads = optimizer.get_unscaled_gradients(grads)
optimizer.apply_gradients(list(zip(grads, tvars)))
logs = {self.loss: loss}
# Convert logits to softmax for metric computation if needed.
if hasattr(self.task_config.model,
'output_softmax') and self.task_config.model.output_softmax:
outputs = tf.nn.softmax(outputs, axis=-1)
if metrics:
self.process_metrics(metrics, labels, outputs)
elif model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in model.metrics})
return logs
def validation_step(self,
inputs: Tuple[Any, Any],
model: tf_keras.Model,
metrics: Optional[List[Any]] = None):
"""Runs validatation step.
Args:
inputs: A tuple of input tensors of (features, labels).
model: A tf_keras.Model instance.
metrics: A nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
features, labels = inputs
one_hot = self.task_config.losses.one_hot
soft_labels = self.task_config.losses.soft_labels
is_multilabel = self.task_config.train_data.is_multilabel
# Note: `soft_labels`` only apply to the training phrase. In the validation
# phrase, labels should still be integer ids and need to be converted to
# one hot format.
if (one_hot or soft_labels) and not is_multilabel:
labels = tf.one_hot(labels, self.task_config.model.num_classes)
outputs = self.inference_step(features, model)
outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
loss = self.build_losses(
model_outputs=outputs,
labels=labels,
aux_losses=model.losses)
logs = {self.loss: loss}
# Convert logits to softmax for metric computation if needed.
if hasattr(self.task_config.model,
'output_softmax') and self.task_config.model.output_softmax:
outputs = tf.nn.softmax(outputs, axis=-1)
if metrics:
self.process_metrics(metrics, labels, outputs)
elif model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in model.metrics})
return logs
def inference_step(self, inputs: tf.Tensor, model: tf_keras.Model):
"""Performs the forward step."""
return model(inputs, training=False)
|