Spaces:
Runtime error
Runtime error
File size: 25,569 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MaskRCNN task definition."""
import os
from typing import Any, Dict, List, Mapping, Optional, Tuple
from absl import logging
import numpy as np
import tensorflow as tf, tf_keras
from official.common import dataset_fn as dataset_fn_lib
from official.core import base_task
from official.core import task_factory
from official.vision.configs import maskrcnn as exp_cfg
from official.vision.dataloaders import input_reader
from official.vision.dataloaders import input_reader_factory
from official.vision.dataloaders import maskrcnn_input
from official.vision.dataloaders import tf_example_decoder
from official.vision.dataloaders import tf_example_label_map_decoder
from official.vision.evaluation import coco_evaluator
from official.vision.evaluation import coco_utils
from official.vision.evaluation import instance_metrics as metrics_lib
from official.vision.losses import maskrcnn_losses
from official.vision.modeling import factory
from official.vision.utils.object_detection import visualization_utils
def zero_out_disallowed_class_ids(batch_class_ids: tf.Tensor,
allowed_class_ids: List[int]):
"""Zeroes out IDs of classes not in allowed_class_ids.
Args:
batch_class_ids: A [batch_size, num_instances] int tensor of input
class IDs.
allowed_class_ids: A python list of class IDs which we want to allow.
Returns:
filtered_class_ids: A [batch_size, num_instances] int tensor with any
class ID not in allowed_class_ids set to 0.
"""
allowed_class_ids = tf.constant(allowed_class_ids,
dtype=batch_class_ids.dtype)
match_ids = (batch_class_ids[:, :, tf.newaxis] ==
allowed_class_ids[tf.newaxis, tf.newaxis, :])
match_ids = tf.reduce_any(match_ids, axis=2)
return tf.where(match_ids, batch_class_ids, tf.zeros_like(batch_class_ids))
@task_factory.register_task_cls(exp_cfg.MaskRCNNTask)
class MaskRCNNTask(base_task.Task):
"""A single-replica view of training procedure.
Mask R-CNN task provides artifacts for training/evalution procedures,
including loading/iterating over Datasets, initializing the model, calculating
the loss, post-processing, and customized metrics with reduction.
"""
def build_model(self):
"""Builds Mask R-CNN model."""
input_specs = tf_keras.layers.InputSpec(
shape=[None] + self.task_config.model.input_size)
l2_weight_decay = self.task_config.losses.l2_weight_decay
# Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
# (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
# (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
l2_regularizer = (tf_keras.regularizers.l2(
l2_weight_decay / 2.0) if l2_weight_decay else None)
model = factory.build_maskrcnn(
input_specs=input_specs,
model_config=self.task_config.model,
l2_regularizer=l2_regularizer)
if self.task_config.freeze_backbone:
model.backbone.trainable = False
# Builds the model through warm-up call.
dummy_images = tf_keras.Input(self.task_config.model.input_size)
dummy_image_shape = tf_keras.layers.Input([2])
_ = model(dummy_images, image_shape=dummy_image_shape, training=False)
return model
def initialize(self, model: tf_keras.Model):
"""Loads pretrained checkpoint."""
if not self.task_config.init_checkpoint:
return
ckpt_dir_or_file = self.task_config.init_checkpoint
if tf.io.gfile.isdir(ckpt_dir_or_file):
ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
# Restoring checkpoint.
if self.task_config.init_checkpoint_modules == 'all':
ckpt = tf.train.Checkpoint(model=model)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
else:
ckpt_items = {}
if 'backbone' in self.task_config.init_checkpoint_modules:
ckpt_items.update(backbone=model.backbone)
if 'decoder' in self.task_config.init_checkpoint_modules:
ckpt_items.update(decoder=model.decoder)
ckpt = tf.train.Checkpoint(**ckpt_items)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
logging.info('Finished loading pretrained checkpoint from %s',
ckpt_dir_or_file)
def build_inputs(
self,
params: exp_cfg.DataConfig,
input_context: Optional[tf.distribute.InputContext] = None,
dataset_fn: Optional[dataset_fn_lib.PossibleDatasetType] = None
) -> tf.data.Dataset:
"""Builds input dataset."""
decoder_cfg = params.decoder.get()
if params.decoder.type == 'simple_decoder':
decoder = tf_example_decoder.TfExampleDecoder(
include_mask=self._task_config.model.include_mask,
regenerate_source_id=decoder_cfg.regenerate_source_id,
mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
elif params.decoder.type == 'label_map_decoder':
decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
label_map=decoder_cfg.label_map,
include_mask=self._task_config.model.include_mask,
regenerate_source_id=decoder_cfg.regenerate_source_id,
mask_binarize_threshold=decoder_cfg.mask_binarize_threshold)
else:
raise ValueError('Unknown decoder type: {}!'.format(params.decoder.type))
parser = maskrcnn_input.Parser(
output_size=self.task_config.model.input_size[:2],
min_level=self.task_config.model.min_level,
max_level=self.task_config.model.max_level,
num_scales=self.task_config.model.anchor.num_scales,
aspect_ratios=self.task_config.model.anchor.aspect_ratios,
anchor_size=self.task_config.model.anchor.anchor_size,
rpn_match_threshold=params.parser.rpn_match_threshold,
rpn_unmatched_threshold=params.parser.rpn_unmatched_threshold,
rpn_batch_size_per_im=params.parser.rpn_batch_size_per_im,
rpn_fg_fraction=params.parser.rpn_fg_fraction,
aug_rand_hflip=params.parser.aug_rand_hflip,
aug_rand_vflip=params.parser.aug_rand_vflip,
aug_scale_min=params.parser.aug_scale_min,
aug_scale_max=params.parser.aug_scale_max,
aug_type=params.parser.aug_type,
skip_crowd_during_training=params.parser.skip_crowd_during_training,
max_num_instances=params.parser.max_num_instances,
include_mask=self.task_config.model.include_mask,
outer_boxes_scale=self.task_config.model.outer_boxes_scale,
mask_crop_size=params.parser.mask_crop_size,
dtype=params.dtype,
)
if not dataset_fn:
dataset_fn = dataset_fn_lib.pick_dataset_fn(params.file_type)
reader = input_reader_factory.input_reader_generator(
params,
dataset_fn=dataset_fn,
decoder_fn=decoder.decode,
combine_fn=input_reader.create_combine_fn(params),
parser_fn=parser.parse_fn(params.is_training))
dataset = reader.read(input_context=input_context)
return dataset
def _build_rpn_losses(
self, outputs: Mapping[str, Any],
labels: Mapping[str, Any]) -> Tuple[tf.Tensor, tf.Tensor]:
"""Builds losses for Region Proposal Network (RPN)."""
rpn_score_loss_fn = maskrcnn_losses.RpnScoreLoss(
tf.shape(outputs['box_outputs'])[1])
rpn_box_loss_fn = maskrcnn_losses.RpnBoxLoss(
self.task_config.losses.rpn_huber_loss_delta)
rpn_score_loss = tf.reduce_mean(
rpn_score_loss_fn(outputs['rpn_scores'], labels['rpn_score_targets']))
rpn_box_loss = tf.reduce_mean(
rpn_box_loss_fn(outputs['rpn_boxes'], labels['rpn_box_targets']))
return rpn_score_loss, rpn_box_loss
def _build_frcnn_losses(
self,
outputs: Mapping[str, Any],
labels: Mapping[str, Any],
) -> Tuple[tf.Tensor, tf.Tensor]:
"""Builds losses for Fast R-CNN."""
cascade_ious = self.task_config.model.roi_sampler.cascade_iou_thresholds
frcnn_cls_loss_fn = maskrcnn_losses.FastrcnnClassLoss(
use_binary_cross_entropy=self.task_config.losses
.frcnn_class_use_binary_cross_entropy,
top_k_percent=self.task_config.losses.frcnn_class_loss_top_k_percent)
frcnn_box_loss_fn = maskrcnn_losses.FastrcnnBoxLoss(
self.task_config.losses.frcnn_huber_loss_delta,
self.task_config.model.detection_head.class_agnostic_bbox_pred)
# Final cls/box losses are computed as an average of all detection heads.
frcnn_cls_loss = 0.0
frcnn_box_loss = 0.0
num_det_heads = 1 if cascade_ious is None else 1 + len(cascade_ious)
for cas_num in range(num_det_heads):
frcnn_cls_loss_i = tf.reduce_mean(
frcnn_cls_loss_fn(
outputs[
'class_outputs_{}'.format(cas_num)
if cas_num
else 'class_outputs'
],
outputs[
'class_targets_{}'.format(cas_num)
if cas_num
else 'class_targets'
],
self.task_config.losses.class_weights,
)
)
frcnn_box_loss_i = tf.reduce_mean(
frcnn_box_loss_fn(
outputs['box_outputs_{}'.format(cas_num
) if cas_num else 'box_outputs'],
outputs['class_targets_{}'
.format(cas_num) if cas_num else 'class_targets'],
outputs['box_targets_{}'.format(cas_num
) if cas_num else 'box_targets']))
frcnn_cls_loss += frcnn_cls_loss_i
frcnn_box_loss += frcnn_box_loss_i
frcnn_cls_loss /= num_det_heads
frcnn_box_loss /= num_det_heads
return frcnn_cls_loss, frcnn_box_loss
def _build_mask_loss(self, outputs: Mapping[str, Any]) -> tf.Tensor:
"""Builds losses for the masks."""
mask_loss_fn = maskrcnn_losses.MaskrcnnLoss()
mask_class_targets = outputs['mask_class_targets']
if self.task_config.allowed_mask_class_ids is not None:
# Classes with ID=0 are ignored by mask_loss_fn in loss computation.
mask_class_targets = zero_out_disallowed_class_ids(
mask_class_targets, self.task_config.allowed_mask_class_ids)
return tf.reduce_mean(
mask_loss_fn(outputs['mask_outputs'], outputs['mask_targets'],
mask_class_targets))
def build_losses(self,
outputs: Mapping[str, Any],
labels: Mapping[str, Any],
aux_losses: Optional[Any] = None) -> Dict[str, tf.Tensor]:
"""Builds Mask R-CNN losses."""
loss_params = self.task_config.losses
rpn_score_loss, rpn_box_loss = self._build_rpn_losses(outputs, labels)
frcnn_cls_loss, frcnn_box_loss = self._build_frcnn_losses(outputs, labels)
if self.task_config.model.include_mask:
mask_loss = self._build_mask_loss(outputs)
else:
mask_loss = tf.constant(0.0, dtype=tf.float32)
model_loss = (
loss_params.rpn_score_weight * rpn_score_loss
+ loss_params.rpn_box_weight * rpn_box_loss
+ loss_params.frcnn_class_weight * frcnn_cls_loss
+ loss_params.frcnn_box_weight * frcnn_box_loss
+ loss_params.mask_weight * mask_loss
)
total_loss = model_loss
if aux_losses:
reg_loss = tf.reduce_sum(aux_losses)
total_loss = model_loss + reg_loss
total_loss = loss_params.loss_weight * total_loss
losses = {
'total_loss': total_loss,
'rpn_score_loss': rpn_score_loss,
'rpn_box_loss': rpn_box_loss,
'frcnn_cls_loss': frcnn_cls_loss,
'frcnn_box_loss': frcnn_box_loss,
'mask_loss': mask_loss,
'model_loss': model_loss,
}
return losses
def _build_coco_metrics(self):
"""Builds COCO metrics evaluator."""
if (not self._task_config.model.include_mask
) or self._task_config.annotation_file:
self.coco_metric = coco_evaluator.COCOEvaluator(
annotation_file=self._task_config.annotation_file,
include_mask=self._task_config.model.include_mask,
per_category_metrics=self._task_config.per_category_metrics)
else:
# Builds COCO-style annotation file if include_mask is True, and
# annotation_file isn't provided.
annotation_path = os.path.join(self._logging_dir, 'annotation.json')
if tf.io.gfile.exists(annotation_path):
logging.info(
'annotation.json file exists, skipping creating the annotation'
' file.')
else:
if self._task_config.validation_data.num_examples <= 0:
logging.info('validation_data.num_examples needs to be > 0')
if not self._task_config.validation_data.input_path:
logging.info('Can not create annotation file for tfds.')
logging.info(
'Creating coco-style annotation file: %s', annotation_path)
coco_utils.scan_and_generator_annotation_file(
self._task_config.validation_data.input_path,
self._task_config.validation_data.file_type,
self._task_config.validation_data.num_examples,
self.task_config.model.include_mask, annotation_path,
regenerate_source_id=self._task_config.validation_data.decoder
.simple_decoder.regenerate_source_id)
self.coco_metric = coco_evaluator.COCOEvaluator(
annotation_file=annotation_path,
include_mask=self._task_config.model.include_mask,
per_category_metrics=self._task_config.per_category_metrics)
def build_metrics(self, training: bool = True):
"""Builds detection metrics."""
self.instance_box_perclass_metrics = None
self.instance_mask_perclass_metrics = None
if training:
metric_names = [
'total_loss',
'rpn_score_loss',
'rpn_box_loss',
'frcnn_cls_loss',
'frcnn_box_loss',
'mask_loss',
'model_loss',
]
return [
tf_keras.metrics.Mean(name, dtype=tf.float32) for name in metric_names
]
else:
if self._task_config.use_coco_metrics:
self._build_coco_metrics()
if self._task_config.use_wod_metrics:
# To use Waymo open dataset metrics, please install one of the pip
# package `waymo-open-dataset-tf-*` from
# https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md#use-pre-compiled-pippip3-packages-for-linux
# Note that the package is built with specific tensorflow version and
# will produce error if it does not match the tf version that is
# currently used.
try:
from official.vision.evaluation import wod_detection_evaluator # pylint: disable=g-import-not-at-top
except ModuleNotFoundError:
logging.error('waymo-open-dataset should be installed to enable Waymo'
' evaluator.')
raise
self.wod_metric = wod_detection_evaluator.WOD2dDetectionEvaluator()
if self.task_config.use_approx_instance_metrics:
self.instance_box_perclass_metrics = metrics_lib.InstanceMetrics(
name='instance_box_perclass',
num_classes=self.task_config.model.num_classes,
iou_thresholds=np.arange(0.5, 1.0, step=0.05),
)
if self.task_config.model.include_mask:
self.instance_mask_perclass_metrics = metrics_lib.InstanceMetrics(
name='instance_mask_perclass',
use_masks=True,
num_classes=self.task_config.model.num_classes,
iou_thresholds=np.arange(0.5, 1.0, step=0.05),
)
return []
def train_step(self,
inputs: Tuple[Any, Any],
model: tf_keras.Model,
optimizer: tf_keras.optimizers.Optimizer,
metrics: Optional[List[Any]] = None):
"""Does forward and backward.
Args:
inputs: a dictionary of input tensors.
model: the model, forward pass definition.
optimizer: the optimizer for this training step.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
images, labels = inputs
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
with tf.GradientTape() as tape:
model_kwargs = {
'image_shape': labels['image_info'][:, 1, :],
'anchor_boxes': labels['anchor_boxes'],
'gt_boxes': labels['gt_boxes'],
'gt_classes': labels['gt_classes'],
'training': True,
}
if self.task_config.model.include_mask:
model_kwargs['gt_masks'] = labels['gt_masks']
if self.task_config.model.outer_boxes_scale > 1.0:
model_kwargs['gt_outer_boxes'] = labels['gt_outer_boxes']
outputs = model(
images, **model_kwargs)
outputs = tf.nest.map_structure(
lambda x: tf.cast(x, tf.float32), outputs)
# Computes per-replica loss.
losses = self.build_losses(
outputs=outputs, labels=labels, aux_losses=model.losses)
scaled_loss = losses['total_loss'] / num_replicas
# For mixed_precision policy, when LossScaleOptimizer is used, loss is
# scaled for numerical stability.
if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
scaled_loss = optimizer.get_scaled_loss(scaled_loss)
tvars = model.trainable_variables
grads = tape.gradient(scaled_loss, tvars)
# Scales back gradient when LossScaleOptimizer is used.
if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
grads = optimizer.get_unscaled_gradients(grads)
optimizer.apply_gradients(list(zip(grads, tvars)))
logs = {self.loss: losses['total_loss']}
if metrics:
for m in metrics:
m.update_state(losses[m.name])
return logs
def _update_metrics(self, labels, outputs, logs):
instance_predictions = {
'detection_boxes': outputs['detection_boxes'],
'detection_scores': outputs['detection_scores'],
'detection_classes': outputs['detection_classes'],
'num_detections': outputs['num_detections'],
'source_id': labels['groundtruths']['source_id'],
'image_info': labels['image_info'],
}
if 'detection_outer_boxes' in outputs:
instance_predictions['detection_outer_boxes'] = outputs[
'detection_outer_boxes'
]
if 'detection_masks' in outputs:
instance_predictions['detection_masks'] = outputs['detection_masks']
if self._task_config.use_coco_metrics:
logs[self.coco_metric.name] = (
labels['groundtruths'],
instance_predictions,
)
if self.task_config.use_wod_metrics:
logs[self.wod_metric.name] = (
labels['groundtruths'],
instance_predictions,
)
instance_labels = {
'boxes': labels['groundtruths']['boxes'],
'classes': labels['groundtruths']['classes'],
'is_crowds': labels['groundtruths']['is_crowds'],
'image_info': labels['image_info'],
}
if self.instance_box_perclass_metrics is not None:
self.instance_box_perclass_metrics.update_state(
y_true=instance_labels, y_pred=instance_predictions
)
if self.instance_mask_perclass_metrics is not None:
instance_labels['masks'] = labels['groundtruths']['masks']
self.instance_mask_perclass_metrics.update_state(
y_true=instance_labels, y_pred=instance_predictions
)
def validation_step(self,
inputs: Tuple[Any, Any],
model: tf_keras.Model,
metrics: Optional[List[Any]] = None):
"""Validatation step.
Args:
inputs: a dictionary of input tensors.
model: the keras.Model.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
images, labels = inputs
outputs = model(
images,
anchor_boxes=labels['anchor_boxes'],
image_shape=labels['image_info'][:, 1, :],
training=False,
)
logs = {self.loss: 0}
self._update_metrics(labels, outputs, logs)
if (
hasattr(self.task_config, 'allow_image_summary')
and self.task_config.allow_image_summary
):
logs.update(
{'visualization': (tf.cast(images, dtype=tf.float32), outputs)}
)
return logs
def aggregate_logs(
self,
state: Optional[Any] = None,
step_outputs: Optional[Dict[str, Any]] = None,
) -> Optional[Any]:
"""Optional aggregation over logs returned from a validation step."""
if not state:
# The metrics which update state on CPU.
if self.task_config.use_coco_metrics:
self.coco_metric.reset_states()
if self.task_config.use_wod_metrics:
self.wod_metric.reset_states()
if self.task_config.use_coco_metrics:
self.coco_metric.update_state(
step_outputs[self.coco_metric.name][0],
step_outputs[self.coco_metric.name][1],
)
if self.task_config.use_wod_metrics:
self.wod_metric.update_state(
step_outputs[self.wod_metric.name][0],
step_outputs[self.wod_metric.name][1],
)
if 'visualization' in step_outputs:
# Update detection state for writing summary if there are artifacts for
# visualization.
if state is None:
state = {}
state.update(visualization_utils.update_detection_state(step_outputs))
# TODO(allenyan): Mapping `detection_masks` (w.r.t. the `gt_boxes`) back
# to full masks (w.r.t. the image). Disable mask visualization fow now.
state.pop('detection_masks', None)
if not state:
# Create an arbitrary state to indicate it's not the first step in the
# following calls to this function.
state = True
return state
def _reduce_instance_metrics(
self, logs: Dict[str, Any], use_masks: bool = False
):
"""Updates the per class and mean instance metrics in the logs."""
if use_masks:
instance_metrics = self.instance_mask_perclass_metrics
prefix = 'mask_'
else:
instance_metrics = self.instance_box_perclass_metrics
prefix = ''
if instance_metrics is None:
raise ValueError(
'No instance metrics defined when use_masks is %s' % use_masks
)
result = instance_metrics.result()
iou_thresholds = instance_metrics.get_config()['iou_thresholds']
for ap_key in instance_metrics.get_average_precision_metrics_keys():
# (num_iou_thresholds, num_classes)
per_class_ap = tf.where(
result['valid_classes'], result[ap_key], tf.zeros_like(result[ap_key])
)
# (num_iou_thresholds,)
mean_ap_by_iou = tf.math.divide_no_nan(
tf.reduce_sum(per_class_ap, axis=-1),
tf.reduce_sum(
tf.cast(result['valid_classes'], dtype=per_class_ap.dtype),
axis=-1,
),
)
logs[f'{prefix}{ap_key}'] = tf.reduce_mean(mean_ap_by_iou)
for j, iou in enumerate(iou_thresholds):
if int(iou * 100) in {50, 75}:
logs[f'{prefix}{ap_key}{int(iou * 100)}'] = mean_ap_by_iou[j]
if self.task_config.per_category_metrics:
# (num_classes,)
per_class_mean_ap = tf.reduce_mean(per_class_ap, axis=0)
valid_classes = result['valid_classes'].numpy()
for k in range(self.task_config.model.num_classes):
if valid_classes[k]:
logs[f'{prefix}{ap_key} ByCategory/{k}'] = per_class_mean_ap[k]
for j, iou in enumerate(iou_thresholds):
if int(iou * 100) in {50, 75}:
logs[f'{prefix}{ap_key}{int(iou * 100)} ByCategory/{k}'] = (
per_class_ap[j][k]
)
def reduce_aggregated_logs(
self,
aggregated_logs: Dict[str, Any],
global_step: Optional[tf.Tensor] = None,
) -> Dict[str, tf.Tensor]:
"""Optional reduce of aggregated logs over validation steps."""
logs = {}
# The metrics which update state on device.
if self.instance_box_perclass_metrics is not None:
self._reduce_instance_metrics(logs, use_masks=False)
self.instance_box_perclass_metrics.reset_state()
if self.instance_mask_perclass_metrics is not None:
self._reduce_instance_metrics(logs, use_masks=True)
self.instance_mask_perclass_metrics.reset_state()
# The metrics which update state on CPU.
if self.task_config.use_coco_metrics:
logs.update(self.coco_metric.result())
if self.task_config.use_wod_metrics:
logs.update(self.wod_metric.result())
# Add visualization for summary.
if isinstance(aggregated_logs, dict) and 'image' in aggregated_logs:
validation_outputs = visualization_utils.visualize_outputs(
logs=aggregated_logs, task_config=self.task_config
)
logs.update(validation_outputs)
return logs
|