File size: 14,243 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Image segmentation task definition."""
from typing import Any, List, Mapping, Optional, Tuple, Union

from absl import logging
import tensorflow as tf, tf_keras

from official.common import dataset_fn
from official.core import base_task
from official.core import task_factory
from official.vision.configs import semantic_segmentation as exp_cfg
from official.vision.dataloaders import input_reader
from official.vision.dataloaders import input_reader_factory
from official.vision.dataloaders import segmentation_input
from official.vision.dataloaders import tfds_factory
from official.vision.evaluation import segmentation_metrics
from official.vision.losses import segmentation_losses
from official.vision.modeling import factory
from official.vision.utils.object_detection import visualization_utils


@task_factory.register_task_cls(exp_cfg.SemanticSegmentationTask)
class SemanticSegmentationTask(base_task.Task):
  """A task for semantic segmentation."""

  def build_model(self):
    """Builds segmentation model."""
    input_specs = tf_keras.layers.InputSpec(shape=[None] +
                                            self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (
        tf_keras.regularizers.l2(l2_weight_decay /
                                 2.0) if l2_weight_decay else None)

    model = factory.build_segmentation_model(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    # Builds the model
    dummy_inputs = tf_keras.Input(self.task_config.model.input_size)
    _ = model(dummy_inputs, training=False)
    return model

  def initialize(self, model: tf_keras.Model):
    """Loads pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if 'all' in self.task_config.init_checkpoint_modules:
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    else:
      ckpt_items = {}
      if 'backbone' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(backbone=model.backbone)
      if 'decoder' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(decoder=model.decoder)

      ckpt = tf.train.Checkpoint(**ckpt_items)
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self,
                   params: exp_cfg.DataConfig,
                   input_context: Optional[tf.distribute.InputContext] = None):
    """Builds classification input."""

    ignore_label = self.task_config.losses.ignore_label
    gt_is_matting_map = self.task_config.losses.gt_is_matting_map

    if params.tfds_name:
      decoder = tfds_factory.get_segmentation_decoder(params.tfds_name)
    else:
      decoder = segmentation_input.Decoder(
          image_feature=params.image_feature,
          additional_dense_features=params.additional_dense_features)

    parser = segmentation_input.Parser(
        output_size=params.output_size,
        crop_size=params.crop_size,
        ignore_label=ignore_label,
        resize_eval_groundtruth=params.resize_eval_groundtruth,
        gt_is_matting_map=gt_is_matting_map,
        groundtruth_padded_size=params.groundtruth_padded_size,
        aug_scale_min=params.aug_scale_min,
        aug_scale_max=params.aug_scale_max,
        aug_rand_hflip=params.aug_rand_hflip,
        preserve_aspect_ratio=params.preserve_aspect_ratio,
        dtype=params.dtype,
        image_feature=params.image_feature,
        additional_dense_features=params.additional_dense_features)

    reader = input_reader_factory.input_reader_generator(
        params,
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
        decoder_fn=decoder.decode,
        combine_fn=input_reader.create_combine_fn(params),
        parser_fn=parser.parse_fn(params.is_training))

    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self,
                   labels: Mapping[str, tf.Tensor],
                   model_outputs: Union[Mapping[str, tf.Tensor], tf.Tensor],
                   aux_losses: Optional[Any] = None):
    """Segmentation loss.

    Args:
      labels: labels.
      model_outputs: Output logits of the classifier.
      aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.

    Returns:
      The total loss tensor.
    """
    loss_params = self._task_config.losses
    segmentation_loss_fn = segmentation_losses.SegmentationLoss(
        loss_params.label_smoothing,
        loss_params.class_weights,
        loss_params.ignore_label,
        use_groundtruth_dimension=loss_params.use_groundtruth_dimension,
        use_binary_cross_entropy=loss_params.use_binary_cross_entropy,
        top_k_percent_pixels=loss_params.top_k_percent_pixels,
        gt_is_matting_map=loss_params.gt_is_matting_map)

    total_loss = segmentation_loss_fn(model_outputs['logits'], labels['masks'])

    if 'mask_scores' in model_outputs:
      mask_scoring_loss_fn = segmentation_losses.MaskScoringLoss(
          loss_params.ignore_label)
      total_loss += loss_params.mask_scoring_weight * mask_scoring_loss_fn(
          model_outputs['mask_scores'],
          model_outputs['logits'],
          labels['masks'])

    if aux_losses:
      total_loss += tf.add_n(aux_losses)

    total_loss = loss_params.loss_weight * total_loss

    return total_loss

  def process_metrics(self, metrics, labels, model_outputs, **kwargs):
    """Process and update metrics.

    Called when using custom training loop API.

    Args:
      metrics: a nested structure of metrics objects. The return of function
        self.build_metrics.
      labels: a tensor or a nested structure of tensors.
      model_outputs: a tensor or a nested structure of tensors. For example,
        output of the keras model built by self.build_model.
      **kwargs: other args.
    """
    for metric in metrics:
      if 'mask_scores_mse' == metric.name:
        actual_mask_scores = segmentation_losses.get_actual_mask_scores(
            model_outputs['logits'], labels['masks'],
            self.task_config.losses.ignore_label)
        metric.update_state(actual_mask_scores, model_outputs['mask_scores'])
      else:
        metric.update_state(labels, model_outputs['logits'])

  def build_metrics(self, training: bool = True):
    """Gets streaming metrics for training/validation."""
    metrics = []
    self.iou_metric = None

    if training and self.task_config.evaluation.report_train_mean_iou:
      metrics.append(
          segmentation_metrics.MeanIoU(
              name='mean_iou',
              num_classes=self.task_config.model.num_classes,
              rescale_predictions=False,
              dtype=tf.float32))
      if self.task_config.model.get('mask_scoring_head'):
        metrics.append(
            tf_keras.metrics.MeanSquaredError(name='mask_scores_mse'))

    if not training:
      self.iou_metric = segmentation_metrics.PerClassIoU(
          name='per_class_iou',
          num_classes=self.task_config.model.num_classes,
          rescale_predictions=(
              not self.task_config.validation_data.resize_eval_groundtruth),
          dtype=tf.float32)
      if (self.task_config.validation_data.resize_eval_groundtruth and
          self.task_config.model.get('mask_scoring_head')):
        # Masks scores metric can only be computed if labels are scaled to match
        # preticted mask scores.
        metrics.append(
            tf_keras.metrics.MeanSquaredError(name='mask_scores_mse'))

    return metrics

  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf_keras.Model,
                 optimizer: tf_keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    input_partition_dims = self.task_config.train_input_partition_dims
    if input_partition_dims:
      strategy = tf.distribute.get_strategy()
      features = strategy.experimental_split_to_logical_devices(
          features, input_partition_dims)

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      if isinstance(outputs, tf.Tensor):
        outputs = {'logits': outputs}
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss = self.build_losses(
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
    if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})

    return logs

  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf_keras.Model,
                      metrics: Optional[List[Any]] = None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    input_partition_dims = self.task_config.eval_input_partition_dims
    if input_partition_dims:
      strategy = tf.distribute.get_strategy()
      features = strategy.experimental_split_to_logical_devices(
          features, input_partition_dims)

    outputs = self.inference_step(features, model)
    if isinstance(outputs, tf.Tensor):
      outputs = {'logits': outputs}
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)

    if self.task_config.validation_data.resize_eval_groundtruth:
      loss = self.build_losses(
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
    else:
      loss = 0

    logs = {self.loss: loss}

    if self.iou_metric is not None:
      self.iou_metric.update_state(labels, outputs['logits'])
    if metrics:
      self.process_metrics(metrics, labels, outputs)

    if (
        hasattr(self.task_config, 'allow_image_summary')
        and self.task_config.allow_image_summary
    ):
      logs.update(
          {'visualization': (tf.cast(features, dtype=tf.float32), outputs)}
      )

    return logs

  def inference_step(self, inputs: tf.Tensor, model: tf_keras.Model):
    """Performs the forward step."""
    return model(inputs, training=False)

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None and self.iou_metric is not None:
      self.iou_metric.reset_states()

    if 'visualization' in step_outputs:
      # Update segmentation state for writing summary if there are artifacts for
      # visualization.
      if state is None:
        state = {}
      state.update(visualization_utils.update_segmentation_state(step_outputs))

    if state is None:
      # Create an arbitrary state to indicate it's not the first step in the
      # following calls to this function.
      state = True

    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    logs = {}
    if self.iou_metric is not None:
      ious = self.iou_metric.result()
      # TODO(arashwan): support loading class name from a label map file.
      if self.task_config.evaluation.report_per_class_iou:
        for i, value in enumerate(ious.numpy()):
          logs.update({'iou/{}'.format(i): value})
      # Computes mean IoU
      logs.update({'mean_iou': tf.reduce_mean(ious)})

    # Add visualization for summary.
    if isinstance(aggregated_logs, dict) and 'image' in aggregated_logs:
      validation_outputs = visualization_utils.visualize_segmentation_outputs(
          logs=aggregated_logs, task_config=self.task_config
      )
      logs.update(validation_outputs)

    return logs