File size: 14,318 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Video classification task definition."""
from typing import Any, Optional, List, Tuple

from absl import logging
import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.configs import video_classification as exp_cfg
from official.vision.dataloaders import input_reader_factory
from official.vision.dataloaders import video_input
from official.vision.modeling import factory_3d
from official.vision.ops import augment


@task_factory.register_task_cls(exp_cfg.VideoClassificationTask)
class VideoClassificationTask(base_task.Task):
  """A task for video classification."""

  def _get_num_classes(self):
    """Gets the number of classes."""
    return self.task_config.train_data.num_classes

  def _get_feature_shape(self):
    """Get the common feature shape for train and eval."""
    return [
        d1 if d1 == d2 else None
        for d1, d2 in zip(self.task_config.train_data.feature_shape,
                          self.task_config.validation_data.feature_shape)
    ]

  def _get_num_test_views(self):
    """Gets number of views for test."""
    num_test_clips = self.task_config.validation_data.num_test_clips
    num_test_crops = self.task_config.validation_data.num_test_crops
    num_test_views = num_test_clips * num_test_crops
    return num_test_views

  def _is_multilabel(self):
    """If the label is multi-labels."""
    return self.task_config.train_data.is_multilabel

  def build_model(self):
    """Builds video classification model."""
    common_input_shape = self._get_feature_shape()
    input_specs = tf_keras.layers.InputSpec(shape=[None] + common_input_shape)
    logging.info('Build model input %r', common_input_shape)

    l2_weight_decay = float(self.task_config.losses.l2_weight_decay)
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf_keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory_3d.build_model(
        self.task_config.model.model_type,
        input_specs=input_specs,
        model_config=self.task_config.model,
        num_classes=self._get_num_classes(),
        l2_regularizer=l2_regularizer)

    if self.task_config.freeze_backbone:
      logging.info('Freezing model backbone.')
      model.backbone.trainable = False
    return model

  def initialize(self, model: tf_keras.Model):
    """Loads pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(model=model)
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    else:
      raise ValueError(
          "Only 'all' or 'backbone' can be used to initialize the model.")

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def _get_dataset_fn(self, params):
    if params.file_type == 'tfrecord':
      return tf.data.TFRecordDataset
    else:
      raise ValueError('Unknown input file type {!r}'.format(params.file_type))

  def _get_decoder_fn(self, params):
    if params.tfds_name:
      decoder = video_input.VideoTfdsDecoder(
          image_key=params.image_field_key, label_key=params.label_field_key)
    else:
      decoder = video_input.Decoder(
          image_key=params.image_field_key, label_key=params.label_field_key)
    if self.task_config.train_data.output_audio:
      assert self.task_config.train_data.audio_feature, 'audio feature is empty'
      decoder.add_feature(self.task_config.train_data.audio_feature,
                          tf.io.VarLenFeature(dtype=tf.float32))
    return decoder.decode

  def build_inputs(self,
                   params: exp_cfg.DataConfig,
                   input_context: Optional[tf.distribute.InputContext] = None):
    """Builds classification input."""

    parser = video_input.Parser(
        input_params=params,
        image_key=params.image_field_key,
        label_key=params.label_field_key)
    postprocess_fn = video_input.PostBatchProcessor(params)
    if params.mixup_and_cutmix is not None:
      def mixup_and_cutmix(features, labels):
        augmenter = augment.MixupAndCutmix(
            mixup_alpha=params.mixup_and_cutmix.mixup_alpha,
            cutmix_alpha=params.mixup_and_cutmix.cutmix_alpha,
            prob=params.mixup_and_cutmix.prob,
            label_smoothing=params.mixup_and_cutmix.label_smoothing,
            num_classes=self._get_num_classes())
        features['image'], labels = augmenter(features['image'], labels)
        return features, labels
      postprocess_fn = mixup_and_cutmix

    reader = input_reader_factory.input_reader_generator(
        params,
        dataset_fn=self._get_dataset_fn(params),
        decoder_fn=self._get_decoder_fn(params),
        parser_fn=parser.parse_fn(params.is_training),
        postprocess_fn=postprocess_fn)

    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self,
                   labels: Any,
                   model_outputs: Any,
                   aux_losses: Optional[Any] = None):
    """Sparse categorical cross entropy loss.

    Args:
      labels: labels.
      model_outputs: Output logits of the classifier.
      aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.

    Returns:
      The total loss tensor.
    """
    all_losses = {}
    losses_config = self.task_config.losses
    total_loss = None
    if self._is_multilabel():
      entropy = -tf.reduce_mean(
          tf.reduce_sum(model_outputs * tf.math.log(model_outputs + 1e-8), -1))
      total_loss = tf_keras.losses.binary_crossentropy(
          labels, model_outputs, from_logits=False)
      all_losses.update({
          'class_loss': total_loss,
          'entropy': entropy,
      })
    else:
      if losses_config.one_hot:
        total_loss = tf_keras.losses.categorical_crossentropy(
            labels,
            model_outputs,
            from_logits=False,
            label_smoothing=losses_config.label_smoothing)
      else:
        total_loss = tf_keras.losses.sparse_categorical_crossentropy(
            labels, model_outputs, from_logits=False)

      total_loss = tf_utils.safe_mean(total_loss)
      all_losses.update({
          'class_loss': total_loss,
      })
    if aux_losses:
      all_losses.update({
          'reg_loss': aux_losses,
      })
      total_loss += tf.add_n(aux_losses)
    all_losses[self.loss] = total_loss

    return all_losses

  def build_metrics(self, training: bool = True):
    """Gets streaming metrics for training/validation."""
    if self.task_config.losses.one_hot:
      metrics = [
          tf_keras.metrics.CategoricalAccuracy(name='accuracy'),
          tf_keras.metrics.TopKCategoricalAccuracy(k=1, name='top_1_accuracy'),
          tf_keras.metrics.TopKCategoricalAccuracy(k=5, name='top_5_accuracy')
      ]
      if self._is_multilabel():
        metrics.append(
            tf_keras.metrics.AUC(
                curve='ROC', multi_label=self._is_multilabel(), name='ROC-AUC'))
        metrics.append(
            tf_keras.metrics.RecallAtPrecision(
                0.95, name='RecallAtPrecision95'))
        metrics.append(
            tf_keras.metrics.AUC(
                curve='PR', multi_label=self._is_multilabel(), name='PR-AUC'))
        if self.task_config.metrics.use_per_class_recall:
          for i in range(self._get_num_classes()):
            metrics.append(
                tf_keras.metrics.Recall(class_id=i, name=f'recall-{i}'))
    else:
      metrics = [
          tf_keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
          tf_keras.metrics.SparseTopKCategoricalAccuracy(
              k=1, name='top_1_accuracy'),
          tf_keras.metrics.SparseTopKCategoricalAccuracy(
              k=5, name='top_5_accuracy')
      ]
    return metrics

  def process_metrics(self, metrics: List[Any], labels: Any,
                      model_outputs: Any):
    """Process and update metrics.

    Called when using custom training loop API.

    Args:
      metrics: a nested structure of metrics objects. The return of function
        self.build_metrics.
      labels: a tensor or a nested structure of tensors.
      model_outputs: a tensor or a nested structure of tensors. For example,
        output of the keras model built by self.build_model.
    """
    for metric in metrics:
      metric.update_state(labels, model_outputs)

  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf_keras.Model,
                 optimizer: tf_keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    input_partition_dims = self.task_config.train_input_partition_dims
    if input_partition_dims:
      strategy = tf.distribute.get_strategy()
      features['image'] = strategy.experimental_split_to_logical_devices(
          features['image'], input_partition_dims)

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      if self._is_multilabel():
        outputs = tf.nest.map_structure(tf.math.sigmoid, outputs)
      else:
        outputs = tf.nest.map_structure(tf.math.softmax, outputs)
      all_losses = self.build_losses(
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
      loss = all_losses[self.loss]
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
          optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
    if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = all_losses
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf_keras.Model,
                      metrics: Optional[List[Any]] = None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    input_partition_dims = self.task_config.eval_input_partition_dims
    if input_partition_dims:
      strategy = tf.distribute.get_strategy()
      features['image'] = strategy.experimental_split_to_logical_devices(
          features['image'], input_partition_dims)

    outputs = self.inference_step(features, model)
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
    logs = self.build_losses(model_outputs=outputs, labels=labels,
                             aux_losses=model.losses)

    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

  def inference_step(self, features: tf.Tensor, model: tf_keras.Model):
    """Performs the forward step."""
    outputs = model(features, training=False)
    if self._is_multilabel():
      outputs = tf.nest.map_structure(tf.math.sigmoid, outputs)
    else:
      outputs = tf.nest.map_structure(tf.math.softmax, outputs)
    num_test_views = self._get_num_test_views()
    if num_test_views > 1:
      # Averaging output probabilities across multiples views.
      outputs = tf.reshape(outputs, [-1, num_test_views, outputs.shape[-1]])
      outputs = tf.reduce_mean(outputs, axis=1)
    return outputs