Spaces:
Runtime error
Runtime error
File size: 14,318 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Video classification task definition."""
from typing import Any, Optional, List, Tuple
from absl import logging
import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.configs import video_classification as exp_cfg
from official.vision.dataloaders import input_reader_factory
from official.vision.dataloaders import video_input
from official.vision.modeling import factory_3d
from official.vision.ops import augment
@task_factory.register_task_cls(exp_cfg.VideoClassificationTask)
class VideoClassificationTask(base_task.Task):
"""A task for video classification."""
def _get_num_classes(self):
"""Gets the number of classes."""
return self.task_config.train_data.num_classes
def _get_feature_shape(self):
"""Get the common feature shape for train and eval."""
return [
d1 if d1 == d2 else None
for d1, d2 in zip(self.task_config.train_data.feature_shape,
self.task_config.validation_data.feature_shape)
]
def _get_num_test_views(self):
"""Gets number of views for test."""
num_test_clips = self.task_config.validation_data.num_test_clips
num_test_crops = self.task_config.validation_data.num_test_crops
num_test_views = num_test_clips * num_test_crops
return num_test_views
def _is_multilabel(self):
"""If the label is multi-labels."""
return self.task_config.train_data.is_multilabel
def build_model(self):
"""Builds video classification model."""
common_input_shape = self._get_feature_shape()
input_specs = tf_keras.layers.InputSpec(shape=[None] + common_input_shape)
logging.info('Build model input %r', common_input_shape)
l2_weight_decay = float(self.task_config.losses.l2_weight_decay)
# Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
# (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
# (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
l2_regularizer = (tf_keras.regularizers.l2(
l2_weight_decay / 2.0) if l2_weight_decay else None)
model = factory_3d.build_model(
self.task_config.model.model_type,
input_specs=input_specs,
model_config=self.task_config.model,
num_classes=self._get_num_classes(),
l2_regularizer=l2_regularizer)
if self.task_config.freeze_backbone:
logging.info('Freezing model backbone.')
model.backbone.trainable = False
return model
def initialize(self, model: tf_keras.Model):
"""Loads pretrained checkpoint."""
if not self.task_config.init_checkpoint:
return
ckpt_dir_or_file = self.task_config.init_checkpoint
if tf.io.gfile.isdir(ckpt_dir_or_file):
ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
# Restoring checkpoint.
if self.task_config.init_checkpoint_modules == 'all':
ckpt = tf.train.Checkpoint(model=model)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
elif self.task_config.init_checkpoint_modules == 'backbone':
ckpt = tf.train.Checkpoint(backbone=model.backbone)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
else:
raise ValueError(
"Only 'all' or 'backbone' can be used to initialize the model.")
logging.info('Finished loading pretrained checkpoint from %s',
ckpt_dir_or_file)
def _get_dataset_fn(self, params):
if params.file_type == 'tfrecord':
return tf.data.TFRecordDataset
else:
raise ValueError('Unknown input file type {!r}'.format(params.file_type))
def _get_decoder_fn(self, params):
if params.tfds_name:
decoder = video_input.VideoTfdsDecoder(
image_key=params.image_field_key, label_key=params.label_field_key)
else:
decoder = video_input.Decoder(
image_key=params.image_field_key, label_key=params.label_field_key)
if self.task_config.train_data.output_audio:
assert self.task_config.train_data.audio_feature, 'audio feature is empty'
decoder.add_feature(self.task_config.train_data.audio_feature,
tf.io.VarLenFeature(dtype=tf.float32))
return decoder.decode
def build_inputs(self,
params: exp_cfg.DataConfig,
input_context: Optional[tf.distribute.InputContext] = None):
"""Builds classification input."""
parser = video_input.Parser(
input_params=params,
image_key=params.image_field_key,
label_key=params.label_field_key)
postprocess_fn = video_input.PostBatchProcessor(params)
if params.mixup_and_cutmix is not None:
def mixup_and_cutmix(features, labels):
augmenter = augment.MixupAndCutmix(
mixup_alpha=params.mixup_and_cutmix.mixup_alpha,
cutmix_alpha=params.mixup_and_cutmix.cutmix_alpha,
prob=params.mixup_and_cutmix.prob,
label_smoothing=params.mixup_and_cutmix.label_smoothing,
num_classes=self._get_num_classes())
features['image'], labels = augmenter(features['image'], labels)
return features, labels
postprocess_fn = mixup_and_cutmix
reader = input_reader_factory.input_reader_generator(
params,
dataset_fn=self._get_dataset_fn(params),
decoder_fn=self._get_decoder_fn(params),
parser_fn=parser.parse_fn(params.is_training),
postprocess_fn=postprocess_fn)
dataset = reader.read(input_context=input_context)
return dataset
def build_losses(self,
labels: Any,
model_outputs: Any,
aux_losses: Optional[Any] = None):
"""Sparse categorical cross entropy loss.
Args:
labels: labels.
model_outputs: Output logits of the classifier.
aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.
Returns:
The total loss tensor.
"""
all_losses = {}
losses_config = self.task_config.losses
total_loss = None
if self._is_multilabel():
entropy = -tf.reduce_mean(
tf.reduce_sum(model_outputs * tf.math.log(model_outputs + 1e-8), -1))
total_loss = tf_keras.losses.binary_crossentropy(
labels, model_outputs, from_logits=False)
all_losses.update({
'class_loss': total_loss,
'entropy': entropy,
})
else:
if losses_config.one_hot:
total_loss = tf_keras.losses.categorical_crossentropy(
labels,
model_outputs,
from_logits=False,
label_smoothing=losses_config.label_smoothing)
else:
total_loss = tf_keras.losses.sparse_categorical_crossentropy(
labels, model_outputs, from_logits=False)
total_loss = tf_utils.safe_mean(total_loss)
all_losses.update({
'class_loss': total_loss,
})
if aux_losses:
all_losses.update({
'reg_loss': aux_losses,
})
total_loss += tf.add_n(aux_losses)
all_losses[self.loss] = total_loss
return all_losses
def build_metrics(self, training: bool = True):
"""Gets streaming metrics for training/validation."""
if self.task_config.losses.one_hot:
metrics = [
tf_keras.metrics.CategoricalAccuracy(name='accuracy'),
tf_keras.metrics.TopKCategoricalAccuracy(k=1, name='top_1_accuracy'),
tf_keras.metrics.TopKCategoricalAccuracy(k=5, name='top_5_accuracy')
]
if self._is_multilabel():
metrics.append(
tf_keras.metrics.AUC(
curve='ROC', multi_label=self._is_multilabel(), name='ROC-AUC'))
metrics.append(
tf_keras.metrics.RecallAtPrecision(
0.95, name='RecallAtPrecision95'))
metrics.append(
tf_keras.metrics.AUC(
curve='PR', multi_label=self._is_multilabel(), name='PR-AUC'))
if self.task_config.metrics.use_per_class_recall:
for i in range(self._get_num_classes()):
metrics.append(
tf_keras.metrics.Recall(class_id=i, name=f'recall-{i}'))
else:
metrics = [
tf_keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
tf_keras.metrics.SparseTopKCategoricalAccuracy(
k=1, name='top_1_accuracy'),
tf_keras.metrics.SparseTopKCategoricalAccuracy(
k=5, name='top_5_accuracy')
]
return metrics
def process_metrics(self, metrics: List[Any], labels: Any,
model_outputs: Any):
"""Process and update metrics.
Called when using custom training loop API.
Args:
metrics: a nested structure of metrics objects. The return of function
self.build_metrics.
labels: a tensor or a nested structure of tensors.
model_outputs: a tensor or a nested structure of tensors. For example,
output of the keras model built by self.build_model.
"""
for metric in metrics:
metric.update_state(labels, model_outputs)
def train_step(self,
inputs: Tuple[Any, Any],
model: tf_keras.Model,
optimizer: tf_keras.optimizers.Optimizer,
metrics: Optional[List[Any]] = None):
"""Does forward and backward.
Args:
inputs: a dictionary of input tensors.
model: the model, forward pass definition.
optimizer: the optimizer for this training step.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
features, labels = inputs
input_partition_dims = self.task_config.train_input_partition_dims
if input_partition_dims:
strategy = tf.distribute.get_strategy()
features['image'] = strategy.experimental_split_to_logical_devices(
features['image'], input_partition_dims)
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
with tf.GradientTape() as tape:
outputs = model(features, training=True)
# Casting output layer as float32 is necessary when mixed_precision is
# mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
outputs = tf.nest.map_structure(
lambda x: tf.cast(x, tf.float32), outputs)
# Computes per-replica loss.
if self._is_multilabel():
outputs = tf.nest.map_structure(tf.math.sigmoid, outputs)
else:
outputs = tf.nest.map_structure(tf.math.softmax, outputs)
all_losses = self.build_losses(
model_outputs=outputs, labels=labels, aux_losses=model.losses)
loss = all_losses[self.loss]
# Scales loss as the default gradients allreduce performs sum inside the
# optimizer.
scaled_loss = loss / num_replicas
# For mixed_precision policy, when LossScaleOptimizer is used, loss is
# scaled for numerical stability.
if isinstance(
optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
scaled_loss = optimizer.get_scaled_loss(scaled_loss)
tvars = model.trainable_variables
grads = tape.gradient(scaled_loss, tvars)
# Scales back gradient before apply_gradients when LossScaleOptimizer is
# used.
if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
grads = optimizer.get_unscaled_gradients(grads)
optimizer.apply_gradients(list(zip(grads, tvars)))
logs = all_losses
if metrics:
self.process_metrics(metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics})
elif model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in model.metrics})
return logs
def validation_step(self,
inputs: Tuple[Any, Any],
model: tf_keras.Model,
metrics: Optional[List[Any]] = None):
"""Validatation step.
Args:
inputs: a dictionary of input tensors.
model: the keras.Model.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
features, labels = inputs
input_partition_dims = self.task_config.eval_input_partition_dims
if input_partition_dims:
strategy = tf.distribute.get_strategy()
features['image'] = strategy.experimental_split_to_logical_devices(
features['image'], input_partition_dims)
outputs = self.inference_step(features, model)
outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
logs = self.build_losses(model_outputs=outputs, labels=labels,
aux_losses=model.losses)
if metrics:
self.process_metrics(metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics})
elif model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in model.metrics})
return logs
def inference_step(self, features: tf.Tensor, model: tf_keras.Model):
"""Performs the forward step."""
outputs = model(features, training=False)
if self._is_multilabel():
outputs = tf.nest.map_structure(tf.math.sigmoid, outputs)
else:
outputs = tf.nest.map_structure(tf.math.softmax, outputs)
num_test_views = self._get_num_test_views()
if num_test_views > 1:
# Averaging output probabilities across multiples views.
outputs = tf.reshape(outputs, [-1, num_test_views, outputs.shape[-1]])
outputs = tf.reduce_mean(outputs, axis=1)
return outputs
|