Spaces:
Runtime error
Runtime error
File size: 25,368 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
# Copyright 2023 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides a `Controller` class for managing the outer training loop."""
import pprint
import time
from typing import Callable, Iterable, Optional, Union
from absl import logging
from orbit import runner
from orbit import utils
import tensorflow as tf, tf_keras
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.eager import monitoring
# pylint: enable=g-direct-tensorflow-import
_orbit_api_gauge = monitoring.BoolGauge(
"/tensorflow/api/orbit", "orbit api usage"
)
def _log(message: str):
"""Logs `message` to the `info` log, and also prints to stdout."""
logging.info(message)
print(message)
logging.ABSLLogger.register_frame_to_skip(__file__, _log.__name__)
def _format_output(output, indent=4):
"""Formats `output`, either on one line, or indented across multiple lines."""
formatted = pprint.pformat(output)
lines = formatted.splitlines()
if len(lines) == 1:
return formatted
lines = [" " * indent + line for line in lines]
return "\n" + "\n".join(lines)
Action = Callable[[runner.Output], None]
class Controller:
"""Class that controls the outer loop of model training and evaluation.
Orbit divides training and evaluation into "inner" and "outer" loops. Inner
loops are implemented by users in the form of `AbstractTrainer` and
`AbstractEvaluator` subclasses, and define how to run a given number of
training or evaluation steps. The outer loop is provided by this `Controller`,
and interleaves calls to the user-provided inner loops with additional actions
such as saving checkpoints, running evaluations, writing summaries, as well as
(optionally) user provided `Action`s (see below).
There are four top-level "outer loops" provided:
- `train`, which trains until a specified number of global steps is reached;
- `evaluate`, for one-off model evaluation;
- `train_and_evaluate`, for interleaved training and evaluation;
- `evaluate_continuously`, for monitoring a given directory and running
evaluations on new model checkpoints.
While this class attempts to provide out-of-the-box solutions for common
training and evaluation use cases, the internal details and method
implementations are also intended to be simple enough to make subclassing or
other custom outer loop implementations easy to achieve.
Some additional customization can be achieved by supplying `train_actions` or
`eval_actions` when constructing the `Controller`. Actions arbitrary callables
that are applied by the `Controller` to the output of train steps (after each
inner loop of `steps_per_loop` steps) or an evaluation. This provides a hook
mechanism, enabling things like reporting metrics to Vizier, model exporting,
additional logging, etc. See the `orbit.actions` package for a small handful
of predefined actions and some utility classes that may be useful in defining
your own.
"""
def __init__(
self,
*, # Makes all args keyword only.
global_step: tf.Variable,
trainer: Optional[runner.AbstractTrainer] = None,
evaluator: Optional[runner.AbstractEvaluator] = None,
strategy: Optional[tf.distribute.Strategy] = None,
# Actions
train_actions: Optional[Iterable[Action]] = None,
eval_actions: Optional[Iterable[Action]] = None,
# Train related
steps_per_loop: Optional[Union[int, Callable[[int], int]]] = None,
checkpoint_manager: Optional[tf.train.CheckpointManager] = None,
enable_async_checkpointing: bool = False,
# Summary related
summary_interval: Optional[int] = None,
summary_dir: Optional[str] = None,
# Evaluation related
eval_summary_dir: Optional[str] = None,
summary_manager: Optional[utils.SummaryManagerInterface] = None,
eval_summary_manager: Optional[utils.SummaryManagerInterface] = None):
"""Initializes a `Controller` instance.
Note that if `checkpoint_manager` is provided and there are checkpoints in
the associated model directory, the model will be restored from the most
recent checkpoint during this `__init__` method.
Args:
global_step: An integer `tf.Variable` storing the global training step
number. Usually this can be obtained from the `iterations` property of
the model's optimizer (e.g. `trainer.optimizer.iterations`). In cases
where multiple optimizers are used, or if one model "step" corresponds
to more than one update to model parameters, users can create and
increment their own global step variable as well. In this case it is
recommended to create the `tf.Variable` inside the distribution strategy
scope, with `aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA` (see
also `orbit.utils.create_global_step()`).
trainer: An instance of `orbit.AbstractTrainer`, which implements the
inner training loop.
evaluator: An instance of `orbit.AbstractEvaluator`, which implements
evaluation.
strategy: An instance of `tf.distribute.Strategy`. If not provided, the
strategy will be initialized from the current in-scope strategy using
`tf.distribute.get_strategy()`.
train_actions: Optional `orbit.Action`s to call after each block of
`steps_per_loop` training steps are run. These will be called with the
output of `trainer.train`.
eval_actions: Optional `orbit.Action`s to call after each evaluation.
These will be called with the output of `evaluator.evaluate`.
steps_per_loop: Optional integer to indicate the number of steps to run in
each inner loop of training (passed as the `num_steps` parameter of
`trainer.train`). It can be also a callable which takes the current
global step value as input and returns the number of steps to run as
output.
checkpoint_manager: An instance of `tf.train.CheckpointManager`. If
provided and there are checkpoints in the associated model directory,
the model will be restored from the most recent checkpoint inside this
`__init__` method. If not provided, the `Controller` will not
automatically save to or restore from checkpoints.
enable_async_checkpointing: Optional bool indicating whether to enable
async checkpoint saving.
summary_interval: Step interval for training summaries. Note that this
argument only applies to `tf.summary` calls inside the `trainer.train`
function. Summaries written by the `Controller` (specifically
"steps_per_second" and output from the `trainer.train` method) will
always be enabled unless the `summary_dir` parameter is `None`. If set,
the value must be divisible by `steps_per_loop`.
summary_dir: The directory to write summaries to. To use the same
directory as for checkpointing, pass `checkpoint_manager.directory`. If
`None`, no training summaries will be written.
eval_summary_dir: The directory to write eval summaries to. If `None`, it
will be set to `summary_dir`. If both `summary_dir` and
`eval_summary_dir` are `None`, no eval summaries will be written.
summary_manager: Instance of the summary manager. If set, the
`summary_dir` will be ignored. Otherwise the summary manager will be
created internally for TensorBoard summaries by default from the
`summary_dir`.
eval_summary_manager: Instance of the eval summary manager. If set, the
`eval_summary_dir` will be ignored. Otherwise the eval summary manager
will be created internally for TensorBoard summaries by default from the
`eval_summary_dir`.
Raises:
ValueError: If both `trainer` and `evaluator` are `None`.
ValueError: If `steps_per_loop` is not a positive integer or a callable.
ValueError: If `summary_interval` is not a positive integer or is not
divisible by `steps_per_loop`.
"""
if trainer is None and evaluator is None:
raise ValueError("`trainer` and `evaluator` should not both be `None`.")
if trainer is not None:
if steps_per_loop is None:
raise ValueError(
"`steps_per_loop` is required when `trainer` is provided.")
elif not callable(steps_per_loop) and (
not isinstance(steps_per_loop, int) or steps_per_loop < 1):
raise ValueError(
f"`steps_per_loop` ({steps_per_loop}) must be a positive integer "
"or a callable.")
if summary_interval is not None:
if summary_interval <= 0:
raise ValueError(
f"`summary_interval` ({summary_interval}) must be larger than 0.")
elif not callable(steps_per_loop) and (summary_interval % steps_per_loop
!= 0):
raise ValueError(
f"`summary interval` ({summary_interval}) must be a multiple "
f"of `steps_per_loop` ({steps_per_loop}).")
if not isinstance(global_step, tf.Variable):
raise ValueError("`global_step` must be a `tf.Variable`.")
self.trainer = trainer
self.evaluator = evaluator
self.strategy = strategy or tf.distribute.get_strategy()
self.train_actions = () if train_actions is None else tuple(train_actions)
self.eval_actions = () if eval_actions is None else tuple(eval_actions)
self.global_step = global_step
self.checkpoint_manager = checkpoint_manager
self._enable_async_checkpoint_saving = enable_async_checkpointing
self._checkpoint_options = tf.train.CheckpointOptions(
enable_async=enable_async_checkpointing
)
if self.trainer is not None:
self.step_timer = None
self.summary_interval = summary_interval
if summary_manager:
self.summary_manager = summary_manager
else:
self.summary_manager = utils.SummaryManager(
summary_dir, tf.summary.scalar, global_step=self.global_step)
self._steps_per_loop = steps_per_loop
if self.evaluator is not None:
eval_summary_dir = eval_summary_dir or summary_dir
if eval_summary_dir == summary_dir and self.trainer is not None:
# Reuse the summary writer if train and evaluation summary directory
# are the same.
self.eval_summary_manager = self.summary_manager
else:
if eval_summary_manager:
self.eval_summary_manager = eval_summary_manager
else:
self.eval_summary_manager = utils.SummaryManager(
eval_summary_dir, tf.summary.scalar, global_step=self.global_step)
tf.summary.experimental.set_step(self.global_step)
# Restores the model if needed.
if self.checkpoint_manager is not None:
restored_path = self.restore_checkpoint()
if restored_path:
_log(f"restored from checkpoint: {restored_path}")
# Set Orbit framework gauge to True value
_orbit_api_gauge.get_cell().set(True)
def train(self, steps: int, checkpoint_at_completion: bool = True):
"""Runs training until the specified global step count has been reached.
This method makes calls to `self.trainer.train()` until the global step
count is equal to `steps`. It will additionally save checkpoints (if a
`CheckpointManager` was passed to `Controller.__init__`) and summarize
training output (if `summary_dir` is set).
When async checkpointing is enabled, a sync is triggered at the end of this
method to make sure any ongoing async checkpoint saving is finished before
returning.
Args:
steps: The global step count to train up to.
checkpoint_at_completion: Whether to save a checkpoint when this method
returns (regardless of the checkpointing interval). Defaults to `True`.
"""
self._require("trainer", for_method="train")
# TODO(momernick): Support steps=None or -1 (training to exhaustion).
current_step = self.global_step.numpy() # Cache, since this is expensive.
_log(f"train | step: {current_step: 6d} | training until step {steps}...")
while current_step < steps:
# Calculates steps to run for the next train loop.
num_steps = min(steps - current_step, self.steps_per_loop)
self._train_n_steps(num_steps)
self._maybe_save_checkpoint()
current_step = self.global_step.numpy()
if checkpoint_at_completion:
self._maybe_save_checkpoint(check_interval=False)
self._sync_on_async_checkpointing()
def evaluate(self, steps: int = -1) -> Optional[runner.Output]:
"""Runs evaluation for the given number of steps.
This method calls `self.evaluator.evaluate(steps)`, then writes the returned
summaries (if any).
Args:
steps: The number of evaluation steps to run. The value `-1` is reserved
as a special sentinel to indicate a "complete" evaluation that runs
until the underlying dataset is exhausted. Support for this is dependent
on the specific `evaluator` being used.
Returns:
The evaluation results as a dictionary mapping names to NumPy values.
Raises:
ValueError: If `evaluator` was not provided to `Controller.__init__`.
ValueError: If no checkpoint is present in `checkpoint_manager.directory`.
ValueError: If `steps` is not a positive value or -1.
"""
self._require("evaluator", for_method="evaluate")
if steps > 0:
steps_msg = f"running {steps} steps of evaluation..."
elif steps == -1:
steps_msg = "running complete evaluation..."
else:
raise ValueError(f"`steps` ({steps}) should be > 0, or == -1.")
current_step = self.global_step.numpy()
_log(f" eval | step: {current_step: 6d} | {steps_msg}")
start = time.time()
assert isinstance(self.evaluator, runner.AbstractEvaluator)
with self.eval_summary_manager.summary_writer().as_default():
steps_tensor = tf.convert_to_tensor(steps, dtype=tf.int32)
eval_output = self.evaluator.evaluate(steps_tensor)
elapsed = time.time() - start
eval_output = eval_output or {}
for action in self.eval_actions:
action(eval_output)
eval_output = tf.nest.map_structure(utils.get_value, eval_output)
if steps > 0:
# Only log if steps has been specified.
steps_per_second = steps / elapsed
eval_output["steps_per_second"] = steps_per_second
steps_per_second_log = f"steps/sec: {steps_per_second: 6.1f} | "
else:
steps_per_second_log = ""
_log(f" eval | step: {current_step: 6d} | "
f"{steps_per_second_log}"
f"eval time: {elapsed: 6.1f} sec | "
f"output: {_format_output(eval_output)}")
self.eval_summary_manager.write_summaries(eval_output)
self.eval_summary_manager.flush()
return eval_output
def train_and_evaluate(
self,
train_steps: int,
eval_steps: int = -1,
eval_interval: Optional[int] = None,
) -> Optional[runner.Output]:
"""Runs interleaved training and evaluation.
This method interleaves calls to `self.train()` and `self.evaluate()`,
training the model until the global step count equals `train_steps`, and
running an evaluation for `eval_steps` every `eval_interval` training steps.
In addition, this method will run a final evaluation at the end of the
training sequence.
When async checkpointing is enabled, a sync is triggered at the end of this
method to make sure any ongoing async checkpoint saving is finished before
returning.
Args:
train_steps: The global step count to train up to.
eval_steps: The number of steps to run during an evaluation. If -1, this
method will evaluate over the entire evaluation dataset.
eval_interval: The number of training steps to run between evaluations. If
set, training will always stop every `eval_interval` steps, even if this
results in a shorter inner loop than specified by `steps_per_loop`
setting. If None, evaluation will only be performed after training is
complete.
Returns:
The evaluation results as a dictionary mapping names to NumPy values.
"""
self._require("trainer", for_method="train_and_evaluate")
self._require("evaluator", for_method="train_and_evaluate")
output = None
current_step = self.global_step.numpy() # Cache, since this is expensive.
eval_interval = eval_interval or (train_steps - current_step)
while current_step < train_steps:
interval = min(train_steps - current_step, eval_interval)
num_steps = current_step + interval
self.train(steps=num_steps, checkpoint_at_completion=False)
output = self.evaluate(steps=eval_steps)
current_step = self.global_step.numpy()
self._maybe_save_checkpoint(check_interval=False)
self._sync_on_async_checkpointing()
return output
def evaluate_continuously(
self,
steps: int = -1,
timeout: Optional[Union[int, float]] = None,
timeout_fn: Optional[Callable[[], bool]] = None,
) -> Optional[runner.Output]:
"""Continuously monitors a directory and evaluates new checkpoints in it.
This method continuously monitors a directory as specified by this
Controller's CheckpointManager init arg and runs evaluation on the
checkpoints found there.
Args:
steps: The number of steps to run when evaluating. If -1, this method will
evaluate over the entire evaluation dataset.
timeout: The maximum number of seconds to wait between checkpoints. See
tf.train.checkpoints_iterator documentation.
timeout_fn: Optional callable to call after a timeout. If the function
returns True, then it means that no new checkpoints will be generated
and the iterator will exit.
Returns:
The evaluation results as a dictionary mapping names to NumPy values.
Raises:
ValueError: If no checkpoint found in `self.checkpoint_manager.directory`.
ValueError: If `evaluator` was not provided as a controller init arg.
"""
self._require("evaluator", for_method="evaluate_continuously")
self._require("checkpoint_manager", for_method="evaluate_continuously")
output = None
assert isinstance(self.checkpoint_manager, tf.train.CheckpointManager)
for checkpoint_path in tf.train.checkpoints_iterator(
self.checkpoint_manager.directory,
timeout=timeout,
timeout_fn=timeout_fn):
self.restore_checkpoint(checkpoint_path)
output = self.evaluate(steps)
return output
def restore_checkpoint(self, checkpoint_path: Optional[str] = None):
"""Restores the model from a checkpoint.
Args:
checkpoint_path: An optional string specifying the checkpoint path to
restore from. If `None`, will restore from the most recent checkpoint
(or initialize the model using a custom `init_fn` if no checkpoints can
be found) using `self.checkpoint_manager.restore_or_initialize()`.
Returns:
The path to the restored checkpoint if a restore happened, or `None` if no
restore occurred.
"""
self._require("checkpoint_manager", for_method="restore_checkpoint")
assert isinstance(self.checkpoint_manager, tf.train.CheckpointManager)
with self.strategy.scope():
# Checkpoint restoring should be inside scope (b/139450638).
if checkpoint_path is not None:
_log(f"restoring model from {checkpoint_path}...")
self.checkpoint_manager.checkpoint.restore(checkpoint_path)
else:
_log("restoring or initializing model...")
checkpoint_path = self.checkpoint_manager.restore_or_initialize()
if checkpoint_path is not None:
_log(f"restored model from {checkpoint_path}.")
return checkpoint_path
def save_checkpoint(self):
"""Saves the model to a checkpoint.
This method will save a checkpoint containing the current state of the
model.
Raises:
ValueError: If no `checkpoint_manager` was provided to
`Controller.__init__`.
"""
self._require("checkpoint_manager", for_method="save_checkpoint")
self._maybe_save_checkpoint(check_interval=False)
@property
def steps_per_loop(self):
"""Returns current steps_per_loop value in a training loop."""
if callable(self._steps_per_loop):
return self._steps_per_loop(self.global_step.numpy())
return self._steps_per_loop
def _train_n_steps(self, num_steps: int):
"""Runs training for `num_steps` steps.
Also prints/logs updates about training progress, and summarizes training
output (if output is returned from `self.trainer.train()`, and if
`self.summary_dir` is set).
Args:
num_steps: An integer specifying how many steps of training to run.
Raises:
RuntimeError: If `global_step` is not properly incremented by `num_steps`
after calling `self.trainer.train(num_steps)`.
"""
if not self.step_timer:
self.step_timer = StepTimer(self.global_step)
current_step = self.global_step.numpy()
with self.summary_manager.summary_writer().as_default():
should_record = False # Allows static optimization in no-summary cases.
if self.summary_interval:
# Create a predicate to determine when summaries should be written.
should_record = lambda: (self.global_step % self.summary_interval == 0)
assert isinstance(self.trainer, runner.AbstractTrainer)
with tf.summary.record_if(should_record):
num_steps_tensor = tf.convert_to_tensor(num_steps, dtype=tf.int32)
train_output = self.trainer.train(num_steps_tensor)
# Verify that global_step was updated properly, then update current_step.
expected_step = current_step + num_steps
if self.global_step.numpy() != expected_step:
message = (
f"`trainer.train({num_steps})` did not update `global_step` by "
f"{num_steps}. Old value was {current_step}, expected updated value "
f"to be {expected_step}, but it was {self.global_step.numpy()}.")
logging.warning(message)
train_output = train_output or {}
for action in self.train_actions:
action(train_output)
train_output = tf.nest.map_structure(utils.get_value, train_output)
current_step = self.global_step.numpy()
steps_per_second = self.step_timer.steps_per_second()
_log(f"train | step: {current_step: 6d} | "
f"steps/sec: {steps_per_second: 6.1f} | "
f"output: {_format_output(train_output)}")
train_output["steps_per_second"] = steps_per_second
self.summary_manager.write_summaries(train_output)
self.summary_manager.flush()
def _maybe_save_checkpoint(self, check_interval: bool = True):
"""Conditionally saves a checkpoint.
A checkpoint is saved if a `CheckpointManager` is available, and if the
required number of steps has elapsed since the last checkpoint was saved
(although this condition can be disabled by setting `check_interval=False`).
Args:
check_interval: Whether to check if the checkpoint interval has fully
elapsed. If `False`, a checkpoint is saved regardless of the elapsed
steps since the most recent checkpoint, unless no `checkpoint_manager`
was provided to `Controller.__init__`.
Returns:
A boolean indicating whether a checkpoint was saved.
"""
if self.checkpoint_manager and self.checkpoint_manager.checkpoint_interval:
ckpt_path = self.checkpoint_manager.save(
checkpoint_number=self.global_step.numpy(),
check_interval=check_interval,
options=self._checkpoint_options)
if ckpt_path is not None:
_log(f"saved checkpoint to {ckpt_path}.")
return True
return False
def _require(self, attribute, for_method):
"""Utility method to raise an error if the given `attribute` is not set."""
if getattr(self, attribute, None) is None:
raise ValueError(
f"`{attribute}` is not set. Pass `{attribute}` to "
f"`Controller.__init__` before calling `{for_method}()`.")
def _sync_on_async_checkpointing(self):
"""Force to wait for the async checkpoint saving (if any) to finish."""
# pylint: disable=protected-access
if self.checkpoint_manager:
logging.info("Sync on async checkpoint saving.")
self.checkpoint_manager.sync()
class StepTimer:
"""Utility class for measuring steps/second."""
def __init__(self, step):
self.step = step
self.start()
def start(self):
self.last_iteration = self.step.numpy()
self.last_time = time.time()
def steps_per_second(self, restart=True):
value = ((self.step.numpy() - self.last_iteration) /
(time.time() - self.last_time))
if restart:
self.start()
return value
|