Spaces:
Runtime error
Runtime error
File size: 17,412 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
# Copyright 2023 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AbstractTrainer/Evaluator subclasses with added functionality.
The classes in this module provide some additional structure to the bare
`AbstractTrainer`/`AbstractEvaluator` APIs.
Both `StandardTrainer` and `StandardEvaluator` split the train/eval loops into
"begin", "step", and "end" methods, and provide an implementation of the loop
itself that makes calls to the relevant step method.
`StandardTrainer` supports running the loop using the TF while loop construct
for added performance (particularly on TPUs). It additionally provides some
functionality to make writing summaries from inside a model more performant when
running on TPUs.
These classes are intended to work well in common settings, however there may
be use cases these classes don't support (for instance, `StandardEvaluator` in
particular doesn't support running full evaluations over multiple different eval
datasets). Users are encouraged to simply fall back to custom `AbstractTrainer`
and `AbstractEvaluator` subclasses in these cases.
"""
import abc
from typing import Any, Optional
import dataclasses
from orbit import runner
from orbit.utils import loop_fns
import tensorflow as tf, tf_keras
@dataclasses.dataclass(frozen=True)
class StandardTrainerOptions:
"""Advanced options for `orbit.StandardTrainer`.
Attributes:
use_tf_function: A boolean indicating whether to apply `tf.function` to the
training loop. This will only affect the body of the loop (involving
`train_step`); `train_loop_begin` and `train_loop_end` will always be run
in eager mode.
use_tf_while_loop: A boolean indicating whether to run the training loop
using a `tf.while_loop`. If `True`, `use_tf_function` must also be `True`.
use_tpu_summary_optimization: A boolean indicating whether to enable a
performance optimization for summaries in TPUs. Writing summaries
conditionally with outside compilation on TPUs can be extremely slow. If
`True`, this optimization creates two `tf.function`s with two XLA programs
(one with summary calls, and one without). The program with summaries runs
only for one step when summaries should be recorded.
"""
use_tf_function: bool = True
use_tf_while_loop: bool = True
use_tpu_summary_optimization: bool = False
class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta):
"""Implements standard functionality on top of the AbstractTrainer API.
This class structures the training "inner loop" roughly as follows:
train_loop_begin()
for _ in range(num_steps):
train_step(train_iterator)
return train_loop_end()
Calls to `train_loop_begin` and `train_loop_end` are always done in eager
mode, while the loop/`train_step` may be implemented using `tf.while` and/or
`tf.function`, as determined by the `options` passed to `__init__`.
"""
def __init__(self,
train_dataset,
options: Optional[StandardTrainerOptions] = None):
"""Initializes the `StandardTrainer` instance.
Args:
train_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
`DistributedDataset`.
options: An `orbit.StandardTrainerOptions` instance.
"""
options = options or StandardTrainerOptions()
if options.use_tf_while_loop and not options.use_tf_function:
raise ValueError("`use_tf_while_loop=True` and `use_tf_function=False` "
"is not supported")
if options.use_tpu_summary_optimization and not options.use_tf_while_loop:
raise ValueError("`use_tpu_summary_optimization=True` and "
"`use_tf_while_loop=False` is not supported")
self._train_options = options
self._train_dataset = train_dataset
self._train_iter = None
self._train_loop_fn = None
def create_train_loop_fn(self):
"""Creates a training loop from the current step function and options.
Returns:
The train loop function, i.e. wrapper of multiple train steps.
"""
train_step_fn = self.train_step
if self._train_options.use_tf_while_loop:
loop_fn = loop_fns.create_tf_while_loop_fn(train_step_fn)
if self._train_options.use_tpu_summary_optimization:
loop_fn = loop_fns.LoopFnWithSummaries(loop_fn)
else:
loop_fn = tf.function(loop_fn)
else:
if self._train_options.use_tf_function:
train_step_fn = tf.function(train_step_fn)
loop_fn = loop_fns.create_loop_fn(train_step_fn)
return loop_fn
def train(self, num_steps: tf.Tensor) -> Optional[runner.Output]:
"""Implements `num_steps` steps of training.
Args:
num_steps: The number of training steps to run. This corresponds directly
to the number of calls made to `train_step`.
Returns:
The output of `train_loop_end`.
"""
self.train_loop_begin()
if self._train_loop_fn is None:
self._train_loop_fn = self.create_train_loop_fn()
if self._train_iter is None:
self._train_iter = tf.nest.map_structure(iter, self.train_dataset)
self._train_loop_fn(self._train_iter, num_steps)
return self.train_loop_end()
def train_loop_begin(self):
"""Called once at the beginning of the training loop.
This method is always called in eager mode, and is a good place to reset
metrics that accumulate values over multiple steps of training.
Note that this method is called before dataset iterator creation.
"""
pass
@abc.abstractmethod
def train_step(self, iterator):
"""Implements one step of training.
What a "step" consists of is up to the implementer. When using distribution
strategies, the call to this method takes place in the "cross-replica
context" for generality, to allow e.g. multiple iterator dequeues and calls
to `strategy.run`.
Note that if `use_tf_function=True`, all the code inside `train_step` should
be compatible with `tf.function` tracing (and in particular, any state
modifications involving `self` should be avoided). In some cases, non-
`tf.function` compatible code can be moved to `train_loop_begin` or
`train_loop_end`, which always execute eagerly.
Args:
iterator: A `tf.nest`-compatible structure of `tf.data.Iterator` or
`DistributedIterator`. The structure of this input matches the structure
of `train_dataset` as passed to `__init__`.
"""
pass
def train_loop_end(self) -> Optional[runner.Output]:
"""Called once at the end of the training loop.
This method is always called in eager mode, and is a good place to get
metric results. The value returned from this function will be returned as-is
from the `train` method implementation provided by `StandardTrainer`.
Returns:
The function may return a dictionary of `Tensors`, which will be
written to logs and as TensorBoard summaries. It can also be a
nested dictionary, yielding a hierarchy of summary directories.
"""
pass
@property
def train_dataset(self):
"""The current training dataset."""
return self._train_dataset
@train_dataset.setter
def train_dataset(self, train_dataset):
"""Sets a new training dataset, replacing the current one.
Any unprocessed examples in the current dataset are discarded.
Args:
train_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
`DistributedDataset`.
"""
self._train_dataset = train_dataset
self._train_iter = None
@dataclasses.dataclass(frozen=True)
class StandardEvaluatorOptions:
"""Advanced options for the `orbit.StandardEvaluator`.
Attributes:
use_tf_function: A boolean indicating whether to apply `tf.function` to the
evaluation loop. This will only affect the body of the loop (involving
`eval_step`); `eval_loop_begin` and `eval_loop_end` will always be run
in eager mode.
use_tf_while_loop: A boolean indicating whether to run the evaluation loop
using a `tf.while_loop`. If `True`, `use_tf_function` must also be `True`.
recreate_iterator_for_each_eval: A boolean indicating whether to recreate a
new iterator for the evaluation dataset before each round of evaluation,
which implies each round of evaluation starts from the beginning of
the evaluation dataset. For example, the evaluation dataset is
`[1, 2, 3, 4]`, batch size is 1 and evaluation steps is 2. If `True`, the
data to be evaluated is [1, 2] every time. If `False`, the iterator
state is maintained between calls to `StandardEvaluator.evaluate()`.
"""
use_tf_function: bool = True
use_tf_while_loop: bool = False
recreate_iterator_for_each_eval: bool = True
class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta):
"""Implements the standard functionality of AbstractEvaluator APIs.
This class structures evaluation roughly as follows:
state = eval_begin()
for _ in range(num_steps):
step_outputs = eval_step(eval_iterator)
state = eval_reduce(state, step_outputs)
return eval_end(state)
Calls to `eval_begin` and `eval_end` are always done in eager
mode, while `eval_step` may be compiled with `tf.function` as determined by
the `options` passed to `__init__`. `eval_reduce` is in eager mode if
`use_tf_while_loop=False` in `StandardEvaluatorOptions`, but in graph mode if
`use_tf_while_loop=True`.
This class does not support completely evaluating multiple different datasets
(i.e., where every example of each dataset should be processed, as opposed to
running for a fixed number of evaluation steps). A custom `AbstractEvaluator`
is recommended in this case.
"""
def __init__(self,
eval_dataset,
options: Optional[StandardEvaluatorOptions] = None):
"""Initializes the `StandardEvaluator` instance.
Args:
eval_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
`DistributedDataset`. On TPUs, if users want to exaust the dataset
without specifying number of eval steps, it is recommended to set
`drop_remainder=False` when batching the dataset, so the infrastructure
can handle the last partial batch properly.
options: An `orbit.StandardEvaluatorOptions` instance.
"""
options = options or StandardEvaluatorOptions()
if options.use_tf_while_loop and not options.use_tf_function:
raise ValueError("`use_tf_while_loop=True` and `use_tf_function=False` "
"is not supported")
self._eval_options = options
self._eval_dataset = eval_dataset
self._eval_iter = None
self._eval_loop_fn = None
def create_eval_loop_fn(self, has_state: bool):
"""Creates an eval loop from the current step function and options.
Args:
has_state: If the step function has state, state will be kept in the loop.
Returns:
The eval loop function, i.e. wrapper of multiple eval steps.
"""
eval_step_fn = self.eval_step
if self._eval_options.use_tf_while_loop:
# TODO(b/176126742): tf.while_loop doesn't support `None` as a loop input
# even when it is not used inside the loop. To workaround this limitation,
# we have to build two tf.functions for it.
if has_state:
loop_fn = loop_fns.create_tf_while_loop_fn_with_state(eval_step_fn)
else:
loop_fn = loop_fns.create_tf_while_loop_fn(eval_step_fn)
loop_fn = tf.function(loop_fn)
else:
if self._eval_options.use_tf_function:
eval_step_fn = tf.function(eval_step_fn)
loop_fn = loop_fns.create_loop_fn(eval_step_fn)
return loop_fn
def evaluate(self, num_steps: tf.Tensor) -> Optional[runner.Output]:
"""Implements `num_steps` steps of evaluation.
Args:
num_steps: The number of evaluation steps to run. When this is -1,
evaluation proceeds until a call to `eval_step` raises a `StopIteration`
or `tf.errors.OutOfRangeError`.
Returns:
The output of `self.eval_end()`.
Raises:
ValueError: If `options.use_tf_while_loop` is `True` and `num_steps` is
unspecified.
"""
if self._eval_options.use_tf_while_loop and num_steps == -1:
raise ValueError("Looping until exhausted is not supported if "
"`options.use_tf_while_loop` is `True`")
outputs = self.eval_begin() # pylint: disable=assignment-from-no-return
has_state = outputs is not None
if self._eval_loop_fn is None:
self._eval_loop_fn = self.create_eval_loop_fn(has_state)
# If `recreate_iterator_for_each_eval` is `True`, `self._eval_iter` is
# always None.
if self._eval_iter is None:
eval_iter = tf.nest.map_structure(iter, self.eval_dataset)
if not self._eval_options.recreate_iterator_for_each_eval:
self._eval_iter = eval_iter
else:
eval_iter = self._eval_iter
if self._eval_options.use_tf_while_loop and not has_state:
self._eval_loop_fn(eval_iter, num_steps)
else:
outputs = self._eval_loop_fn(
eval_iter, num_steps, state=outputs, reduce_fn=self.eval_reduce)
if outputs is None:
return self.eval_end()
else:
return self.eval_end(outputs)
def eval_begin(self) -> Any:
"""Called once at the beginning of the evaluation.
This method is always called in eager mode, and is a good place to reset
metrics that accumulate values over the course of evaluation.
Note that this method is called before dataset iterator creation.
Returns:
A value to pass as the `state` argument to `eval_reduce`.
"""
pass
@abc.abstractmethod
def eval_step(self, iterator) -> Any:
"""Implements one step of evaluation.
What a "step" consists of is up to the implementer. When using distribution
strategies, the call to this method takes place in the "cross-replica
context" for generality, to allow e.g. multiple iterator dequeues and calls
to `strategy.run`.
Note that if `use_tf_function=True`, all the code inside `eval_step` should
be compatible with `tf.function` tracing (and in particular, any state
modifications involving `self` should be avoided). In some cases, non-
`tf.function` compatible code can be moved to `eval_loop_begin`,
`eval_reduce`, or `eval_loop_end`, which always execute eagerly.
Args:
iterator: A `tf.nest`-compatible structure of `tf.data.Iterator` or
`DistributedIterator`.
Returns:
An output which is passed as `step_outputs` argument into `eval_reduce`
function.
"""
pass
def eval_end(self, *args) -> Optional[runner.Output]:
"""Called at the end of the evaluation.
Called once at the end of evaluation.
This method is always called in eager mode, and is a good place to get
metric results. The value returned from this function will be returned as-is
from the `evaluate` method implementation provided by `StandardEvaluator`.
Args:
*args: The outputs from `eval_reduce` for the last eval step, if they are
non-`None` (if they are `None`, nothing is passed).
Returns:
The function may return a dictionary of `Tensors`, which will be
written to logs and as TensorBoard summaries. It can also be a
nested dictionary, yielding a hierarchy of summary directories.
"""
pass
def eval_reduce(self,
state: Optional[Any] = None,
step_outputs: Optional[runner.Output] = None) -> Any:
"""A function to perform per-step reduction on the evaluation outputs.
This is useful for passing state throughout evaluation, especially in cases
where maintaining or accumulating state is hard to accomplish using
`tf.metrics.Metric` or other `tf.Variable`-based approaches. For instance,
it can be used to easily accumulate all per-example losses from the full
evaluation for subsequent processing in `eval_end()`.
Args:
state: A state being maintained throughout the evaluation.
step_outputs: Outputs from the current evaluation step.
Returns:
An output which is passed as the `state` argument to this function for the
next step. After evaluation is finished, the output from last step will be
passed to `eval_end`.
"""
pass
@property
def eval_dataset(self):
"""The current evaluation dataset."""
return self._eval_dataset
@eval_dataset.setter
def eval_dataset(self, eval_dataset):
"""Sets a new eval dataset, replacing the current one.
Any unprocessed examples in the current dataset are discarded.
Args:
eval_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
`DistributedDataset`.
"""
self._eval_dataset = eval_dataset
self._eval_iter = None
|