File size: 5,348 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for maskrcnn_losses."""

from absl.testing import parameterized
import tensorflow as tf, tf_keras

from official.vision.losses import maskrcnn_losses


class MaskrcnnLossesTest(parameterized.TestCase, tf.test.TestCase):

  def testRpnScoreLoss(self):
    batch_size = 2
    height = 32
    width = 32
    num_anchors = 10
    score_outputs = {
        '1': tf.random.uniform([batch_size, height, width, num_anchors])
    }
    score_targets = {
        '1':
            tf.random.uniform([batch_size, height, width, num_anchors],
                              minval=-1,
                              maxval=2,
                              dtype=tf.int32)
    }
    loss_fn = maskrcnn_losses.RpnScoreLoss(rpn_batch_size_per_im=8)
    self.assertEqual(tf.rank(loss_fn(score_outputs, score_targets)), 0)

  def testRpnBoxLoss(self):
    batch_size = 2
    height = 32
    width = 32
    num_anchors = 10
    box_outputs = {
        '1': tf.random.uniform([batch_size, height, width, num_anchors * 4])
    }
    box_targets = {
        '1': tf.random.uniform([batch_size, height, width, num_anchors * 4])
    }
    loss_fn = maskrcnn_losses.RpnBoxLoss(huber_loss_delta=1. / 9.)
    self.assertEqual(tf.rank(loss_fn(box_outputs, box_targets)), 0)

  def testRpnBoxLossValidBox(self):
    box_outputs = {'1': tf.constant([[[[0.2, 0.2, 1.4, 1.4]]]])}
    box_targets = {'1': tf.constant([[[[0., 0., 1., 1.]]]])}
    loss_fn = maskrcnn_losses.RpnBoxLoss(huber_loss_delta=1. / 9.)
    self.assertAllClose(loss_fn(box_outputs, box_targets), 0.027093, atol=1e-4)

  def testRpnBoxLossInvalidBox(self):
    box_outputs = {'1': tf.constant([[[[0.2, 0.2, 1.4, 1.4]]]])}
    box_targets = {'1': tf.constant([[[[0., 0., 0., 0.]]]])}
    loss_fn = maskrcnn_losses.RpnBoxLoss(huber_loss_delta=1. / 9.)
    self.assertAllClose(loss_fn(box_outputs, box_targets), 0., atol=1e-4)

  @parameterized.parameters(True, False)
  def testFastrcnnClassLoss(self, use_binary_cross_entropy):
    batch_size = 2
    num_boxes = 10
    num_classes = 5
    class_outputs = tf.random.uniform([batch_size, num_boxes, num_classes])
    class_targets = tf.random.uniform([batch_size, num_boxes],
                                      minval=0,
                                      maxval=num_classes + 1,
                                      dtype=tf.int32)
    loss_fn = maskrcnn_losses.FastrcnnClassLoss(use_binary_cross_entropy)
    class_weights = [1.0] * num_classes
    self.assertEqual(
        tf.rank(loss_fn(class_outputs, class_targets, class_weights)), 0
    )

  def testFastrcnnClassLossTopK(self):
    class_targets = tf.constant([[0, 0, 0, 2]])
    class_outputs = tf.constant([[
        [100.0, 0.0, 0.0],
        [100.0, 0.0, 0.0],
        [100.0, 0.0, 0.0],
        [0.0, 1.0, 0.0],
    ]])
    class_weights = [1.0, 1.0, 1.0]
    self.assertAllClose(
        maskrcnn_losses.FastrcnnClassLoss(top_k_percent=0.5)(
            class_outputs, class_targets, class_weights
        ),
        0.775718,
        atol=1e-4,
    )
    self.assertAllClose(
        maskrcnn_losses.FastrcnnClassLoss(top_k_percent=1.0)(
            class_outputs, class_targets, class_weights
        ),
        0.387861,
        atol=1e-4,
    )

  def testFastrcnnBoxLoss(self):
    batch_size = 2
    num_boxes = 10
    num_classes = 5
    box_outputs = tf.random.uniform([batch_size, num_boxes, num_classes * 4])
    box_targets = tf.random.uniform([batch_size, num_boxes, 4])
    class_targets = tf.random.uniform([batch_size, num_boxes],
                                      minval=0,
                                      maxval=num_classes + 1,
                                      dtype=tf.int32)
    loss_fn = maskrcnn_losses.FastrcnnBoxLoss(huber_loss_delta=1.)
    self.assertEqual(
        tf.rank(loss_fn(box_outputs, class_targets, box_targets)), 0)

  def testMaskrcnnLoss(self):
    batch_size = 2
    num_masks = 10
    mask_height = 16
    mask_width = 16
    num_classes = 5
    mask_outputs = tf.random.uniform(
        [batch_size, num_masks, mask_height, mask_width])
    mask_targets = tf.cast(
        tf.random.uniform([batch_size, num_masks, mask_height, mask_width],
                          minval=0,
                          maxval=2,
                          dtype=tf.int32), tf.float32)
    select_class_targets = tf.random.uniform([batch_size, num_masks],
                                             minval=0,
                                             maxval=num_classes + 1,
                                             dtype=tf.int32)
    loss_fn = maskrcnn_losses.MaskrcnnLoss()
    self.assertEqual(
        tf.rank(loss_fn(mask_outputs, mask_targets, select_class_targets)), 0)


if __name__ == '__main__':
  tf.test.main()