Spaces:
Runtime error
Runtime error
File size: 8,507 Bytes
5672777 7161e64 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# Copyright 2023 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides the `NewBestMetric` condition and associated helper classes."""
import json
import os
import sys
from typing import Any, Callable, Optional, Union
import uuid
from modeling.orbit import runner
from modeling.orbit import utils
import tensorflow as tf, tf_keras
MetricFn = Callable[[runner.Output], Union[float, tf.Tensor]]
class NewBestMetric:
"""Condition that is satisfied when a new best metric is achieved.
This class keeps track of the best metric value seen so far, optionally in a
persistent (preemption-safe) way.
Two methods are provided, which each satisfy the `Action` protocol: `test` for
only testing whether a new best metric is achieved by a given train/eval
output, and `commit`, which both tests and records the new best metric value
if it is achieved. These separate methods enable the same `NewBestMetric`
instance to be reused as a condition multiple times, and can also provide
additional preemption/failure safety. For example, to avoid updating the best
metric if a model export fails or is pre-empted:
new_best_metric = orbit.actions.NewBestMetric(
'accuracy', filename='/model/dir/best_metric')
action = orbit.actions.ConditionalAction(
condition=new_best_metric.test,
action=[
orbit.actions.ExportSavedModel(...),
new_best_metric.commit
])
The default `__call__` implementation is equivalent to `commit`.
This class is safe to use in multi-client settings if all clients can be
guaranteed to compute the same metric. However when saving metrics it may be
helpful to avoid unnecessary writes by setting the `write_value` parameter to
`False` for most clients.
Attributes:
metric: The metric passed to __init__ (may be a string key or a callable
that can be applied to train/eval output).
higher_is_better: Whether higher metric values are better.
"""
def __init__(self,
metric: Union[str, MetricFn],
higher_is_better: bool = True,
filename: Optional[str] = None,
write_metric=True):
"""Initializes the instance.
Args:
metric: Either a string key name to use to look up a metric (assuming the
train/eval output is a dictionary), or a callable that accepts the
train/eval output and returns a metric value.
higher_is_better: Whether higher metric values are better. If `True`, a
new best metric is achieved when the metric value is strictly greater
than the previous best metric. If `False`, a new best metric is achieved
when the metric value is strictly less than the previous best metric.
filename: A filename to use for storage of the best metric value seen so
far, to allow peristence of the value across preemptions. If `None`
(default), values aren't persisted.
write_metric: If `filename` is set, this controls whether this instance
will write new best metric values to the file, or just read from the
file to obtain the initial value. Setting this to `False` for most
clients in some multi-client setups can avoid unnecessary file writes.
Has no effect if `filename` is `None`.
"""
self.metric = metric
self.higher_is_better = higher_is_better
float_max = sys.float_info.max
self._best_value = JSONPersistedValue(
initial_value=-float_max if higher_is_better else float_max,
filename=filename,
write_value=write_metric)
def __call__(self, output: runner.Output) -> bool:
"""Tests `output` and updates the current best value if necessary.
This is equivalent to `commit` below.
Args:
output: The train or eval output to test.
Returns:
`True` if `output` contains a new best metric value, `False` otherwise.
"""
return self.commit(output)
def metric_value(self, output: runner.Output) -> float:
"""Computes the metric value for the given `output`."""
if callable(self.metric):
value = self.metric(output)
else:
value = output[self.metric]
return float(utils.get_value(value))
@property
def best_value(self) -> float:
"""Returns the best metric value seen so far."""
return self._best_value.read()
def test(self, output: runner.Output) -> bool:
"""Tests `output` to see if it contains a new best metric value.
If `output` does contain a new best metric value, this method does *not*
save it (i.e., calling this method multiple times in a row with the same
`output` will continue to return `True`).
Args:
output: The train or eval output to test.
Returns:
`True` if `output` contains a new best metric value, `False` otherwise.
"""
metric_value = self.metric_value(output)
if self.higher_is_better:
if metric_value > self.best_value:
return True
else: # Lower is better.
if metric_value < self.best_value:
return True
return False
def commit(self, output: runner.Output) -> bool:
"""Tests `output` and updates the current best value if necessary.
Unlike `test` above, if `output` does contain a new best metric value, this
method *does* save it (i.e., subsequent calls to this method with the same
`output` will return `False`).
Args:
output: The train or eval output to test.
Returns:
`True` if `output` contains a new best metric value, `False` otherwise.
"""
if self.test(output):
self._best_value.write(self.metric_value(output))
return True
return False
class JSONPersistedValue:
"""Represents a value that is persisted via a file-based backing store.
The value must be JSON-serializable. Each time the value is updated, it will
be written to the backing file. It is only read from the file at
initialization.
"""
def __init__(self,
initial_value: Any,
filename: str,
write_value: bool = True):
"""Initializes the instance.
Args:
initial_value: The initial value to use if no backing file exists or was
given. This must be a JSON-serializable value (possibly nested
combination of lists, dicts, and primitive values).
filename: The path to use for persistent storage of the value. This may be
`None`, in which case the value is not stable across preemptions.
write_value: If `True`, new values will be written to `filename` on calls
to `write()`. If `False`, `filename` is only read once to restore any
persisted value, and new values will not be written to it. This can be
useful in certain multi-client settings to avoid race conditions or
excessive file writes. If `filename` is `None`, this parameter has no
effect.
"""
self._value = None
self._filename = filename
self._write_value = write_value
if self._filename is not None:
if tf.io.gfile.exists(self._filename):
if tf.io.gfile.stat(self._filename).length > 0:
with tf.io.gfile.GFile(self._filename, 'r') as f:
self._value = json.load(f)
elif self._write_value:
tf.io.gfile.makedirs(os.path.dirname(self._filename))
if self._value is None:
self.write(initial_value)
def read(self):
"""Returns the value."""
return self._value
def write(self, value):
"""Writes the value, updating the backing store if one was provided."""
self._value = value
if self._filename is not None and self._write_value:
# To achieve atomic writes, we first write to a temporary file, and then
# rename it to `self._filename`.
tmp_filename = f'{self._filename}.tmp.{uuid.uuid4().hex}'
with tf.io.gfile.GFile(tmp_filename, 'w') as f:
json.dump(self._value, f)
tf.io.gfile.rename(tmp_filename, self._filename, overwrite=True)
|