File size: 4,315 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
 
 
 
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Testing utils for mock models and tasks."""
from typing import Dict, Text
import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling.multitask import base_model


class MockFooModel(tf_keras.Model):
  """A mock model can consume 'foo' and 'bar' inputs."""

  def __init__(self, shared_layer, *args, **kwargs):
    super().__init__(*args, **kwargs)
    self._share_layer = shared_layer
    self._foo_specific_layer = tf_keras.layers.Dense(1)
    self.inputs = {"foo": tf_keras.Input(shape=(2,), dtype=tf.float32),
                   "bar": tf_keras.Input(shape=(2,), dtype=tf.float32)}

  def call(self, inputs):  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
    self.add_loss(tf.zeros((1,), dtype=tf.float32))
    if "foo" in inputs:
      input_tensor = inputs["foo"]
    else:
      input_tensor = inputs["bar"]
    return self._foo_specific_layer(self._share_layer(input_tensor))


class MockBarModel(tf_keras.Model):
  """A mock model can only consume 'bar' inputs."""

  def __init__(self, shared_layer, *args, **kwargs):
    super().__init__(*args, **kwargs)
    self._share_layer = shared_layer
    self._bar_specific_layer = tf_keras.layers.Dense(1)
    self.inputs = {"bar": tf_keras.Input(shape=(2,), dtype=tf.float32)}

  def call(self, inputs):  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
    self.add_loss(tf.zeros((2,), dtype=tf.float32))
    return self._bar_specific_layer(self._share_layer(inputs["bar"]))


class MockMultiTaskModel(base_model.MultiTaskBaseModel):

  def __init__(self, *args, **kwargs):
    self._shared_dense = tf_keras.layers.Dense(1)
    super().__init__(*args, **kwargs)

  def _instantiate_sub_tasks(self) -> Dict[Text, tf_keras.Model]:
    return {
        "foo": MockFooModel(self._shared_dense),
        "bar": MockBarModel(self._shared_dense)
    }


def mock_data(feature_name):
  """Mock dataset function."""

  def _generate_data(_):
    x = tf.zeros(shape=(2,), dtype=tf.float32)
    label = tf.zeros([1], dtype=tf.int32)
    return {feature_name: x}, label

  dataset = tf.data.Dataset.range(1)
  dataset = dataset.repeat()
  dataset = dataset.map(
      _generate_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
  return dataset.prefetch(buffer_size=1).batch(2, drop_remainder=True)


class FooConfig(cfg.TaskConfig):
  pass


class BarConfig(cfg.TaskConfig):
  pass


@task_factory.register_task_cls(FooConfig)
class MockFooTask(base_task.Task):
  """Mock foo task object for testing."""

  def build_metrics(self, training: bool = True):
    del training
    return [tf_keras.metrics.Accuracy(name="foo_acc")]

  def build_inputs(self, params):
    return mock_data("foo")

  def build_model(self) -> tf_keras.Model:
    return MockFooModel(shared_layer=tf_keras.layers.Dense(1))

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    loss = tf_keras.losses.mean_squared_error(labels, model_outputs)
    if aux_losses:
      loss += tf.add_n(aux_losses)
    return tf.reduce_mean(loss)


@task_factory.register_task_cls(BarConfig)
class MockBarTask(base_task.Task):
  """Mock bar task object for testing."""

  def build_metrics(self, training: bool = True):
    del training
    return [tf_keras.metrics.Accuracy(name="bar_acc")]

  def build_inputs(self, params):
    return mock_data("bar")

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    loss = tf_keras.losses.mean_squared_error(labels, model_outputs)
    if aux_losses:
      loss += tf.add_n(aux_losses)
    return tf.reduce_mean(loss)