Spaces:
Runtime error
Runtime error
File size: 10,716 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset reader for vision model garden."""
from typing import Any, Callable, Mapping, Optional, Tuple, Union
from absl import logging
import tensorflow as tf, tf_keras
from official.core import config_definitions as cfg
from official.core import input_reader
InputReader = input_reader.InputReader
def build_weighted_sampling_combine_fn(
weights: Mapping[Any, Any], stop_on_empty_dataset=True
) -> Callable[[tf.data.Dataset], tf.data.Dataset]:
"""Builds a combine_fn using weighted sampling."""
def combine_fn(datasets: Mapping[Any, tf.data.Dataset]) -> tf.data.Dataset:
"""Combines multiple datasets using weighted sampling."""
ds = []
ws = []
for k, dataset in datasets.items():
ds.append(dataset)
ws.append(weights[k])
return tf.data.Dataset.sample_from_datasets(
ds, ws, stop_on_empty_dataset=stop_on_empty_dataset)
return combine_fn
def create_combine_fn(
params: cfg.DataConfig
) -> Union[None, Callable[[tf.data.Dataset], tf.data.Dataset]]:
"""Creates and returns a combine_fn for dataset mixing."""
if (
hasattr(params, 'stop_on_empty_dataset')
and params.stop_on_empty_dataset is not None
):
stop_on_empty_dataset = params.stop_on_empty_dataset
else:
stop_on_empty_dataset = True
if params.weights:
# Combine multiple datasets using weighted sampling.
if (not isinstance(params.input_path, cfg.base_config.Config) or
not isinstance(params.weights, cfg.base_config.Config)):
raise ValueError(
'input_path and weights must both be a Config to use weighted '
'sampling.')
input_paths = params.input_path.as_dict()
weights = params.weights.as_dict()
if len(input_paths) != len(weights):
raise ValueError(
'The number of input_path and weights must be the same, but got %d '
'input_paths and %d weights.' % (len(input_paths), len(weights)))
for k in input_paths.keys():
if k not in weights:
raise ValueError(
'input_path key \'%s\' does not have a corresponding weight.' % k)
return build_weighted_sampling_combine_fn(weights, stop_on_empty_dataset)
return None
def calculate_batch_sizes(total_batch_size: int,
pseudo_label_ratio: float,
pseudo_label_batch_size: int = 0) -> Tuple[int, int]:
"""Calculates labeled and pseudo-labeled dataset batch sizes.
Returns (labeled_batch_size, pseudo_labeled_batch_size) given a
total batch size and pseudo-label data ratio.
Args:
total_batch_size: The total batch size for all data.
pseudo_label_ratio: A float ratio of pseudo-labeled to labeled data in a
batch. If it is negative, use `pseudo_label_batch_size` instead.
pseudo_label_batch_size: The batch size of pseudo-labeled data. It is ignored
if `pseudo_label_ratio` is valid. If not, it will be used and it cannot be
larger than total global batch size or less than 0 if pseudo_label_ratio is
also less than 0.
Returns:
(labeled_batch_size, pseudo_labeled_batch_size) as ints.
Raises:
ValueError: If total_batch_size is negative, or both If pseudo_label_ratio
is negative and pseudo-label global_batch_size is negative or larger than
total batch size.
"""
if total_batch_size < 0:
raise ValueError('Invalid total_batch_size: {}'.format(total_batch_size))
if pseudo_label_ratio >= 0.0:
ratio_factor = pseudo_label_ratio / (1.0 + pseudo_label_ratio)
pseudo_label_batch_size = int(total_batch_size * ratio_factor)
label_batch_size = total_batch_size - pseudo_label_batch_size
else:
if pseudo_label_batch_size > total_batch_size or pseudo_label_batch_size < 0:
raise ValueError(
'The batch size of pseudo-label dataset should not be larger than '
'total global batch size.')
logging.info('data_ratio for pseudo-label dataset is less than 0. '
'Use global_batch_size from pseudo_label data config instead.')
label_batch_size = total_batch_size - pseudo_label_batch_size
return label_batch_size, pseudo_label_batch_size
class CombinationDatasetInputReader(input_reader.InputReader):
"""Combination dataset input reader."""
def __init__(self,
params: cfg.DataConfig,
dataset_fn=tf.data.TFRecordDataset,
pseudo_label_dataset_fn=tf.data.TFRecordDataset,
decoder_fn: Optional[Callable[..., Any]] = None,
combine_fn: Optional[Callable[..., Any]] = None,
sample_fn: Optional[Callable[..., Any]] = None,
parser_fn: Optional[Callable[..., Any]] = None,
transform_and_batch_fn: Optional[Callable[
[tf.data.Dataset, Optional[tf.distribute.InputContext]],
tf.data.Dataset]] = None,
postprocess_fn: Optional[Callable[..., Any]] = None):
"""Initializes an CombinationDatasetInputReader instance.
This class mixes a labeled and pseudo-labeled dataset. The params
must contain "pseudo_label_data.input_path" to specify the
pseudo-label dataset files and "pseudo_label_data.data_ratio"
to specify a per-batch mixing ratio of pseudo-label examples to
labeled dataset examples.
Args:
params: A config_definitions.DataConfig object.
dataset_fn: A `tf.data.Dataset` that consumes the input files. For
example, it can be `tf.data.TFRecordDataset`.
pseudo_label_dataset_fn: A `tf.data.Dataset` that consumes the input
files. For example, it can be `tf.data.TFRecordDataset`.
decoder_fn: An optional `callable` that takes the serialized data string
and decodes them into the raw tensor dictionary.
combine_fn: An optional `callable` that takes a dictionarty of
`tf.data.Dataset` objects as input and outputs a combined dataset. It
will be executed after the decoder_fn and before the sample_fn.
sample_fn: An optional `callable` that takes a `tf.data.Dataset` object as
input and outputs the transformed dataset. It performs sampling on the
decoded raw tensors dict before the parser_fn.
parser_fn: An optional `callable` that takes the decoded raw tensors dict
and parse them into a dictionary of tensors that can be consumed by the
model. It will be executed after decoder_fn.
transform_and_batch_fn: An optional `callable` that takes a
`tf.data.Dataset` object and an optional `tf.distribute.InputContext` as
input, and returns a `tf.data.Dataset` object. It will be executed after
`parser_fn` to transform and batch the dataset; if None, after
`parser_fn` is executed, the dataset will be batched into per-replica
batch size.
postprocess_fn: A optional `callable` that processes batched tensors. It
will be executed after batching.
Raises:
ValueError: If drop_remainder is False.
"""
super().__init__(
params=params,
dataset_fn=dataset_fn,
decoder_fn=decoder_fn,
combine_fn=combine_fn,
sample_fn=sample_fn,
parser_fn=parser_fn,
transform_and_batch_fn=transform_and_batch_fn,
postprocess_fn=postprocess_fn)
self._pseudo_label_file_pattern = params.pseudo_label_data.input_path
self._pseudo_label_dataset_fn = pseudo_label_dataset_fn
self._pseudo_label_data_ratio = params.pseudo_label_data.data_ratio
self._pseudo_label_batch_size = params.pseudo_label_data.global_batch_size
self._pseudo_label_matched_files = input_reader.match_files(
self._pseudo_label_file_pattern)
if not self._drop_remainder:
raise ValueError(
'Must use drop_remainder=True with CombinationDatasetInputReader')
def read(
self,
input_context: Optional[tf.distribute.InputContext] = None
) -> tf.data.Dataset:
"""Generates a tf.data.Dataset object."""
labeled_batch_size, pl_batch_size = calculate_batch_sizes(
self._global_batch_size, self._pseudo_label_data_ratio,
self._pseudo_label_batch_size)
if not labeled_batch_size and pl_batch_size:
raise ValueError(
'Invalid batch_size: {} and pseudo_label_data_ratio: {}, '
'resulting in a 0 batch size for one of the datasets.'.format(
self._global_batch_size, self._pseudo_label_data_ratio))
def _read_decode_and_parse_dataset(matched_files, dataset_fn, batch_size,
input_context):
dataset = self._read_data_source(matched_files, dataset_fn, input_context)
return self._decode_and_parse_dataset(dataset, batch_size, input_context)
labeled_dataset = _read_decode_and_parse_dataset(
matched_files=self._matched_files,
dataset_fn=self._dataset_fn,
batch_size=labeled_batch_size,
input_context=input_context)
pseudo_labeled_dataset = _read_decode_and_parse_dataset(
matched_files=self._pseudo_label_matched_files,
dataset_fn=self._pseudo_label_dataset_fn,
batch_size=pl_batch_size,
input_context=input_context)
def concat_fn(d1, d2):
return tf.nest.map_structure(
lambda x1, x2: tf.concat([x1, x2], axis=0), d1, d2)
dataset_concat = tf.data.Dataset.zip(
(labeled_dataset, pseudo_labeled_dataset))
dataset_concat = dataset_concat.map(
concat_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
def maybe_map_fn(dataset, fn):
return dataset if fn is None else dataset.map(
fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset_concat = maybe_map_fn(dataset_concat, self._postprocess_fn)
dataset_concat = self._maybe_apply_data_service(dataset_concat,
input_context)
if self._deterministic is not None:
options = tf.data.Options()
options.experimental_deterministic = self._deterministic
dataset_concat = dataset_concat.with_options(options)
return dataset_concat.prefetch(tf.data.experimental.AUTOTUNE)
|