Spaces:
Runtime error
Runtime error
File size: 17,372 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data parser and processing for RetinaNet.
Parse image and ground-truths in a dataset to training targets and package them
into (image, labels) tuple for RetinaNet.
"""
from typing import Optional
# Import libraries
from absl import logging
import tensorflow as tf, tf_keras
from official.vision.dataloaders import parser
from official.vision.dataloaders import utils
from official.vision.ops import anchor
from official.vision.ops import augment
from official.vision.ops import box_ops
from official.vision.ops import preprocess_ops
class Parser(parser.Parser):
"""Parser to parse an image and its annotations into a dictionary of tensors."""
def __init__(self,
output_size,
min_level,
max_level,
num_scales,
aspect_ratios,
anchor_size,
match_threshold=0.5,
unmatched_threshold=0.5,
box_coder_weights=None,
aug_type=None,
aug_rand_hflip=False,
aug_scale_min=1.0,
aug_scale_max=1.0,
use_autoaugment=False,
autoaugment_policy_name='v0',
skip_crowd_during_training=True,
max_num_instances=100,
dtype='bfloat16',
resize_first: Optional[bool] = None,
mode=None,
pad=True,
keep_aspect_ratio=True):
"""Initializes parameters for parsing annotations in the dataset.
Args:
output_size: `Tensor` or `list` for [height, width] of output image. The
output_size should be divided by the largest feature stride 2^max_level.
min_level: `int` number of minimum level of the output feature pyramid.
max_level: `int` number of maximum level of the output feature pyramid.
num_scales: `int` number representing intermediate scales added on each
level. For instances, num_scales=2 adds one additional intermediate
anchor scales [2^0, 2^0.5] on each level.
aspect_ratios: `list` of float numbers representing the aspect ratio
anchors added on each level. The number indicates the ratio of width to
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
on each scale level.
anchor_size: `float` number representing the scale of size of the base
anchor to the feature stride 2^level.
match_threshold: `float` number between 0 and 1 representing the
lower-bound threshold to assign positive labels for anchors. An anchor
with a score over the threshold is labeled positive.
unmatched_threshold: `float` number between 0 and 1 representing the
upper-bound threshold to assign negative labels for anchors. An anchor
with a score below the threshold is labeled negative.
box_coder_weights: Optional `list` of 4 positive floats to scale y, x, h,
and w when encoding box coordinates. If set to None, does not perform
scaling. For Faster RCNN, the open-source implementation recommends
using [10.0, 10.0, 5.0, 5.0].
aug_type: An optional Augmentation object to choose from AutoAugment and
RandAugment.
aug_rand_hflip: `bool`, if True, augment training with random horizontal
flip.
aug_scale_min: `float`, the minimum scale applied to `output_size` for
data augmentation during training.
aug_scale_max: `float`, the maximum scale applied to `output_size` for
data augmentation during training.
use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy
during training.
autoaugment_policy_name: `string` that specifies the name of the
AutoAugment policy that will be used during training.
skip_crowd_during_training: `bool`, if True, skip annotations labeled with
`is_crowd` equals to 1.
max_num_instances: `int` number of maximum number of instances in an
image. The groundtruth data will be padded to `max_num_instances`.
dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
resize_first: Optional `bool`, if True, resize the image before the
augmentations; computationally more efficient.
mode: a ModeKeys. Specifies if this is training, evaluation, prediction or
prediction with ground-truths in the outputs.
pad: A bool indicating whether to pad the input image to make it
size a factor of 2**max_level. The padded size will be the smallest
rectangle, such that each dimension is the smallest multiple of
2**max_level which is larger than the desired output size. For example,
if desired output size = (320, 320) and max_level = 7, the output padded
size = (384, 384). This is necessary when using FPN as it assumes each
lower feature map is 2x size of its higher neighbor. Without padding,
such relationship may be invalidated. The backbone may produce 5x5 and
2x2 consecutive feature maps, which does not work with FPN.
keep_aspect_ratio: `bool`, if True, keep the aspect ratio when resizing.
"""
self._mode = mode
self._max_num_instances = max_num_instances
self._skip_crowd_during_training = skip_crowd_during_training
# Anchor.
self._output_size = output_size
self._min_level = min_level
self._max_level = max_level
self._num_scales = num_scales
self._aspect_ratios = aspect_ratios
self._anchor_size = anchor_size
self._match_threshold = match_threshold
self._unmatched_threshold = unmatched_threshold
self._box_coder_weights = box_coder_weights
# Data augmentation.
self._aug_rand_hflip = aug_rand_hflip
self._aug_scale_min = aug_scale_min
self._aug_scale_max = aug_scale_max
# Data augmentation with AutoAugment or RandAugment.
self._augmenter = None
if aug_type is not None:
if aug_type.type == 'autoaug':
logging.info('Using AutoAugment.')
self._augmenter = augment.AutoAugment(
augmentation_name=aug_type.autoaug.augmentation_name,
cutout_const=aug_type.autoaug.cutout_const,
translate_const=aug_type.autoaug.translate_const)
elif aug_type.type == 'randaug':
logging.info('Using RandAugment.')
self._augmenter = augment.RandAugment.build_for_detection(
num_layers=aug_type.randaug.num_layers,
magnitude=aug_type.randaug.magnitude,
cutout_const=aug_type.randaug.cutout_const,
translate_const=aug_type.randaug.translate_const,
prob_to_apply=aug_type.randaug.prob_to_apply,
exclude_ops=aug_type.randaug.exclude_ops)
else:
raise ValueError(f'Augmentation policy {aug_type.type} not supported.')
# Deprecated. Data Augmentation with AutoAugment.
self._use_autoaugment = use_autoaugment
self._autoaugment_policy_name = autoaugment_policy_name
# Data type.
self._dtype = dtype
# Input pipeline optimization.
self._resize_first = resize_first
# Whether to pad image to make its size the smallest factor of 2*max_level.
# This is needed when using FPN decoder.
self._pad = pad
self._keep_aspect_ratio = keep_aspect_ratio
def _resize_and_crop_image_and_boxes(self, image, boxes, pad=True):
"""Resizes and crops image and boxes, optionally with padding."""
# Resizes and crops image.
padded_size = None
if pad:
padded_size = preprocess_ops.compute_padded_size(self._output_size,
2**self._max_level)
image, image_info = preprocess_ops.resize_and_crop_image(
image,
self._output_size,
padded_size=padded_size,
aug_scale_min=self._aug_scale_min,
aug_scale_max=self._aug_scale_max,
keep_aspect_ratio=self._keep_aspect_ratio,
)
# Resizes and crops boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
return image, boxes, image_info
def _parse_train_data(self, data, anchor_labeler=None, input_anchor=None):
"""Parses data for training and evaluation."""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
# If not empty, `attributes` is a dict of (name, ground_truth) pairs.
# `ground_truth` of attributes is assumed in shape [N, attribute_size].
attributes = data.get('groundtruth_attributes', {})
is_crowds = data['groundtruth_is_crowd']
# Skips annotations with `is_crowd` = True.
if self._skip_crowd_during_training:
num_groundtruths = tf.shape(input=classes)[0]
with tf.control_dependencies([num_groundtruths, is_crowds]):
indices = tf.cond(
pred=tf.greater(tf.size(input=is_crowds), 0),
true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
false_fn=lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
classes = tf.gather(classes, indices)
boxes = tf.gather(boxes, indices)
for k, v in attributes.items():
attributes[k] = tf.gather(v, indices)
# Gets original image.
image = data['image']
image_size = tf.cast(tf.shape(image)[0:2], tf.float32)
less_output_pixels = (
self._output_size[0] * self._output_size[1]
) < image_size[0] * image_size[1]
# Resizing first can reduce augmentation computation if the original image
# has more pixels than the desired output image.
# There might be a smarter threshold to compute less_output_pixels as
# we keep the padding to the very end, i.e., a resized image likely has less
# pixels than self._output_size[0] * self._output_size[1].
resize_first = self._resize_first and less_output_pixels
if resize_first:
image, boxes, image_info = self._resize_and_crop_image_and_boxes(
image, boxes, pad=False
)
image = tf.cast(image, dtype=tf.uint8)
# Apply autoaug or randaug.
if self._augmenter is not None:
image, boxes = self._augmenter.distort_with_boxes(image, boxes)
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = preprocess_ops.normalize_image(image)
# Flips image randomly during training.
if self._aug_rand_hflip:
image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_ops.denormalize_boxes(boxes, image_shape)
if self._pad:
padded_size = preprocess_ops.compute_padded_size(
self._output_size, 2**self._max_level
)
else:
padded_size = self._output_size
if not resize_first:
image, boxes, image_info = (
self._resize_and_crop_image_and_boxes(image, boxes, pad=self._pad)
)
image = tf.image.pad_to_bounding_box(
image, 0, 0, padded_size[0], padded_size[1]
)
image = tf.ensure_shape(image, padded_size + [3])
image_height, image_width, _ = image.get_shape().as_list()
# Filters out ground-truth boxes that are all zeros.
indices = box_ops.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
for k, v in attributes.items():
attributes[k] = tf.gather(v, indices)
# Assigns anchors.
if input_anchor is None:
input_anchor = anchor.build_anchor_generator(
min_level=self._min_level,
max_level=self._max_level,
num_scales=self._num_scales,
aspect_ratios=self._aspect_ratios,
anchor_size=self._anchor_size,
)
anchor_boxes = input_anchor(image_size=(image_height, image_width))
if anchor_labeler is None:
anchor_labeler = anchor.AnchorLabeler(
match_threshold=self._match_threshold,
unmatched_threshold=self._unmatched_threshold,
box_coder_weights=self._box_coder_weights,
)
(cls_targets, box_targets, att_targets, cls_weights,
box_weights) = anchor_labeler.label_anchors(
anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)
# Casts input image to desired data type.
image = tf.cast(image, dtype=self._dtype)
# Packs labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': anchor_boxes,
'cls_weights': cls_weights,
'box_weights': box_weights,
'image_info': image_info,
}
if att_targets:
labels['attribute_targets'] = att_targets
return image, labels
def _parse_eval_data(self, data, anchor_labeler=None, input_anchor=None):
"""Parses data for training and evaluation."""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
# If not empty, `attributes` is a dict of (name, ground_truth) pairs.
# `ground_truth` of attributes is assumed in shape [N, attribute_size].
attributes = data.get('groundtruth_attributes', {})
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = preprocess_ops.normalize_image(image)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_ops.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
if self._pad:
padded_size = preprocess_ops.compute_padded_size(
self._output_size, 2**self._max_level
)
else:
padded_size = self._output_size
image, image_info = preprocess_ops.resize_and_crop_image(
image,
self._output_size,
padded_size=padded_size,
aug_scale_min=1.0,
aug_scale_max=1.0,
keep_aspect_ratio=self._keep_aspect_ratio,
)
image = tf.ensure_shape(image, padded_size + [3])
image_height, image_width, _ = image.get_shape().as_list()
# Resizes and crops boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
# Filters out ground-truth boxes that are all zeros.
indices = box_ops.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
for k, v in attributes.items():
attributes[k] = tf.gather(v, indices)
# Assigns anchors.
if input_anchor is None:
input_anchor = anchor.build_anchor_generator(
min_level=self._min_level,
max_level=self._max_level,
num_scales=self._num_scales,
aspect_ratios=self._aspect_ratios,
anchor_size=self._anchor_size,
)
anchor_boxes = input_anchor(image_size=(image_height, image_width))
if anchor_labeler is None:
anchor_labeler = anchor.AnchorLabeler(
match_threshold=self._match_threshold,
unmatched_threshold=self._unmatched_threshold,
box_coder_weights=self._box_coder_weights,
)
(cls_targets, box_targets, att_targets, cls_weights,
box_weights) = anchor_labeler.label_anchors(
anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)
# Casts input image to desired data type.
image = tf.cast(image, dtype=self._dtype)
# Sets up ground-truth data for evaluation.
groundtruths = {
'source_id': data['source_id'],
'height': data['height'],
'width': data['width'],
'num_detections': tf.shape(data['groundtruth_classes']),
'image_info': image_info,
'boxes': box_ops.denormalize_boxes(
data['groundtruth_boxes'], image_shape),
'classes': data['groundtruth_classes'],
'areas': data['groundtruth_area'],
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
}
if 'groundtruth_attributes' in data:
groundtruths['attributes'] = data['groundtruth_attributes']
groundtruths['source_id'] = utils.process_source_id(
groundtruths['source_id'])
groundtruths = utils.pad_groundtruths_to_fixed_size(
groundtruths, self._max_num_instances)
# Packs labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': anchor_boxes,
'cls_weights': cls_weights,
'box_weights': box_weights,
'image_info': image_info,
'groundtruths': groundtruths,
}
if att_targets:
labels['attribute_targets'] = att_targets
return image, labels
|