Spaces:
Runtime error
Runtime error
File size: 11,838 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data parser and processing for segmentation datasets."""
import tensorflow as tf, tf_keras
from official.vision.configs import semantic_segmentation as config_lib
from official.vision.dataloaders import decoder
from official.vision.dataloaders import parser
from official.vision.dataloaders import utils
from official.vision.ops import preprocess_ops
class Decoder(decoder.Decoder):
"""A tf.Example decoder for segmentation task."""
def __init__(self,
image_feature=config_lib.DenseFeatureConfig(),
additional_dense_features=None):
self._keys_to_features = {
'image/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'image/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'image/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'image/segmentation/class/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
image_feature.feature_name:
tf.io.FixedLenFeature((), tf.string, default_value='')
}
if additional_dense_features:
for feature in additional_dense_features:
self._keys_to_features[feature.feature_name] = tf.io.FixedLenFeature(
(), tf.string, default_value='')
def decode(self, serialized_example):
return tf.io.parse_single_example(serialized_example,
self._keys_to_features)
class Parser(parser.Parser):
"""Parser to parse an image and its annotations into a dictionary of tensors."""
def __init__(self,
output_size,
crop_size=None,
resize_eval_groundtruth=True,
gt_is_matting_map=False,
groundtruth_padded_size=None,
ignore_label=255,
aug_rand_hflip=False,
preserve_aspect_ratio=True,
aug_scale_min=1.0,
aug_scale_max=1.0,
dtype='float32',
image_feature=config_lib.DenseFeatureConfig(),
additional_dense_features=None):
"""Initializes parameters for parsing annotations in the dataset.
Args:
output_size: `Tensor` or `list` for [height, width] of output image. The
output_size should be divided by the largest feature stride 2^max_level.
crop_size: `Tensor` or `list` for [height, width] of the crop. If
specified a training crop of size crop_size is returned. This is useful
for cropping original images during training while evaluating on
original image sizes.
resize_eval_groundtruth: `bool`, if True, eval ground-truth masks are
resized to output_size.
gt_is_matting_map: `bool`, if True, the expected mask is in the range
between 0 and 255. The parser will normalize the value of the mask into
the range between 0 and 1.
groundtruth_padded_size: `Tensor` or `list` for [height, width]. When
resize_eval_groundtruth is set to False, the ground-truth masks are
padded to this size.
ignore_label: `int` the pixel with ignore label will not used for training
and evaluation.
aug_rand_hflip: `bool`, if True, augment training with random horizontal
flip.
preserve_aspect_ratio: `bool`, if True, the aspect ratio is preserved,
otherwise, the image is resized to output_size.
aug_scale_min: `float`, the minimum scale applied to `output_size` for
data augmentation during training.
aug_scale_max: `float`, the maximum scale applied to `output_size` for
data augmentation during training.
dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
image_feature: the config for the image input (usually RGB). Defaults to
the config for a 3-channel image with key = `image/encoded` and ImageNet
dataset mean/stddev.
additional_dense_features: `list` of DenseFeatureConfig for additional
dense features.
"""
self._output_size = output_size
self._crop_size = crop_size
self._resize_eval_groundtruth = resize_eval_groundtruth
if (not resize_eval_groundtruth) and (groundtruth_padded_size is None):
raise ValueError('groundtruth_padded_size ([height, width]) needs to be'
'specified when resize_eval_groundtruth is False.')
self._gt_is_matting_map = gt_is_matting_map
self._groundtruth_padded_size = groundtruth_padded_size
self._ignore_label = ignore_label
self._preserve_aspect_ratio = preserve_aspect_ratio
# Data augmentation.
self._aug_rand_hflip = aug_rand_hflip
self._aug_scale_min = aug_scale_min
self._aug_scale_max = aug_scale_max
# dtype.
self._dtype = dtype
self._image_feature = image_feature
self._additional_dense_features = additional_dense_features
def _prepare_image_and_label(self, data):
"""Prepare normalized image and label."""
height = data['image/height']
width = data['image/width']
label = tf.io.decode_image(
data['image/segmentation/class/encoded'], channels=1)
label = tf.reshape(label, (1, height, width))
label = tf.cast(label, tf.float32)
image = tf.io.decode_image(
data[self._image_feature.feature_name],
channels=self._image_feature.num_channels,
dtype=tf.uint8)
image = tf.reshape(image, (height, width, self._image_feature.num_channels))
# Normalizes the image feature with mean and std values, which are divided
# by 255 because an uint8 image are re-scaled automatically. Images other
# than uint8 type will be wrongly normalized.
image = preprocess_ops.normalize_image(
image, [mean / 255.0 for mean in self._image_feature.mean],
[stddev / 255.0 for stddev in self._image_feature.stddev])
if self._additional_dense_features:
input_list = [image]
for feature_cfg in self._additional_dense_features:
feature = tf.io.decode_image(
data[feature_cfg.feature_name],
channels=feature_cfg.num_channels,
dtype=tf.uint8)
feature = tf.reshape(feature, (height, width, feature_cfg.num_channels))
feature = preprocess_ops.normalize_image(
feature, [mean / 255.0 for mean in feature_cfg.mean],
[stddev / 255.0 for stddev in feature_cfg.stddev])
input_list.append(feature)
concat_input = tf.concat(input_list, axis=2)
else:
concat_input = image
if not self._preserve_aspect_ratio:
label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
concat_input = tf.image.resize(
concat_input, self._output_size, method='bilinear')
label = tf.image.resize(label, self._output_size, method='nearest')
label = tf.reshape(label[:, :, -1], [1] + self._output_size)
return concat_input, label
def _parse_train_data(self, data):
"""Parses data for training and evaluation."""
image, label = self._prepare_image_and_label(data)
# Normalize the label into the range of 0 and 1 for matting ground-truth.
# Note that the input ground-truth labels must be 0 to 255, and do not
# contain ignore_label. For gt_is_matting_map case, ignore_label is only
# used for padding the labels.
if self._gt_is_matting_map:
scale = tf.constant(255.0, dtype=tf.float32)
scale = tf.expand_dims(scale, axis=0)
scale = tf.expand_dims(scale, axis=0)
label = tf.cast(label, tf.float32) / scale
if self._crop_size:
label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
# If output_size is specified, resize image, and label to desired
# output_size.
if self._output_size:
image = tf.image.resize(image, self._output_size, method='bilinear')
label = tf.image.resize(label, self._output_size, method='nearest')
image_mask = tf.concat([image, label], axis=2)
image_mask_crop = tf.image.random_crop(
image_mask, self._crop_size + [tf.shape(image_mask)[-1]])
image = image_mask_crop[:, :, :-1]
label = tf.reshape(image_mask_crop[:, :, -1], [1] + self._crop_size)
# Flips image randomly during training.
if self._aug_rand_hflip:
image, _, label = preprocess_ops.random_horizontal_flip(
image, masks=label)
train_image_size = self._crop_size if self._crop_size else self._output_size
# Resizes and crops image.
image, image_info = preprocess_ops.resize_and_crop_image(
image,
train_image_size,
train_image_size,
aug_scale_min=self._aug_scale_min,
aug_scale_max=self._aug_scale_max)
# Resizes and crops boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
# Pad label and make sure the padded region assigned to the ignore label.
# The label is first offset by +1 and then padded with 0.
label += 1
label = tf.expand_dims(label, axis=3)
label = preprocess_ops.resize_and_crop_masks(label, image_scale,
train_image_size, offset)
label -= 1
label = tf.where(
tf.equal(label, -1), self._ignore_label * tf.ones_like(label), label)
label = tf.squeeze(label, axis=0)
valid_mask = tf.not_equal(label, self._ignore_label)
labels = {
'masks': label,
'valid_masks': valid_mask,
'image_info': image_info,
}
# Cast image as self._dtype
image = tf.cast(image, dtype=self._dtype)
return image, labels
def _parse_eval_data(self, data):
"""Parses data for training and evaluation."""
image, label = self._prepare_image_and_label(data)
# Binarize mask if ground-truth is a matting map
if self._gt_is_matting_map:
label = tf.divide(tf.cast(label, dtype=tf.float32), 255.0)
label = utils.binarize_matting_map(label)
# The label is first offset by +1 and then padded with 0.
label += 1
label = tf.expand_dims(label, axis=3)
# Resizes and crops image.
image, image_info = preprocess_ops.resize_and_crop_image(
image, self._output_size, self._output_size)
if self._resize_eval_groundtruth:
# Resizes eval masks to match input image sizes. In that case, mean IoU
# is computed on output_size not the original size of the images.
image_scale = image_info[2, :]
offset = image_info[3, :]
label = preprocess_ops.resize_and_crop_masks(label, image_scale,
self._output_size, offset)
else:
label = tf.image.pad_to_bounding_box(label, 0, 0,
self._groundtruth_padded_size[0],
self._groundtruth_padded_size[1])
label -= 1
label = tf.where(
tf.equal(label, -1), self._ignore_label * tf.ones_like(label), label)
label = tf.squeeze(label, axis=0)
valid_mask = tf.not_equal(label, self._ignore_label)
labels = {
'masks': label,
'valid_masks': valid_mask,
'image_info': image_info
}
# Cast image as self._dtype
image = tf.cast(image, dtype=self._dtype)
return image, labels
|