File size: 11,838 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Data parser and processing for segmentation datasets."""

import tensorflow as tf, tf_keras
from official.vision.configs import semantic_segmentation as config_lib
from official.vision.dataloaders import decoder
from official.vision.dataloaders import parser
from official.vision.dataloaders import utils
from official.vision.ops import preprocess_ops


class Decoder(decoder.Decoder):
  """A tf.Example decoder for segmentation task."""

  def __init__(self,
               image_feature=config_lib.DenseFeatureConfig(),
               additional_dense_features=None):
    self._keys_to_features = {
        'image/encoded':
            tf.io.FixedLenFeature((), tf.string, default_value=''),
        'image/height':
            tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'image/width':
            tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'image/segmentation/class/encoded':
            tf.io.FixedLenFeature((), tf.string, default_value=''),
        image_feature.feature_name:
            tf.io.FixedLenFeature((), tf.string, default_value='')
    }
    if additional_dense_features:
      for feature in additional_dense_features:
        self._keys_to_features[feature.feature_name] = tf.io.FixedLenFeature(
            (), tf.string, default_value='')

  def decode(self, serialized_example):
    return tf.io.parse_single_example(serialized_example,
                                      self._keys_to_features)


class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               output_size,
               crop_size=None,
               resize_eval_groundtruth=True,
               gt_is_matting_map=False,
               groundtruth_padded_size=None,
               ignore_label=255,
               aug_rand_hflip=False,
               preserve_aspect_ratio=True,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               dtype='float32',
               image_feature=config_lib.DenseFeatureConfig(),
               additional_dense_features=None):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      crop_size: `Tensor` or `list` for [height, width] of the crop. If
        specified a training crop of size crop_size is returned. This is useful
        for cropping original images during training while evaluating on
        original image sizes.
      resize_eval_groundtruth: `bool`, if True, eval ground-truth masks are
        resized to output_size.
      gt_is_matting_map: `bool`, if True, the expected mask is in the range
        between 0 and 255. The parser will normalize the value of the mask into
        the range between 0 and 1.
      groundtruth_padded_size: `Tensor` or `list` for [height, width]. When
        resize_eval_groundtruth is set to False, the ground-truth masks are
        padded to this size.
      ignore_label: `int` the pixel with ignore label will not used for training
        and evaluation.
      aug_rand_hflip: `bool`, if True, augment training with random horizontal
        flip.
      preserve_aspect_ratio: `bool`, if True, the aspect ratio is preserved,
        otherwise, the image is resized to output_size.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
      image_feature: the config for the image input (usually RGB). Defaults to
        the config for a 3-channel image with key = `image/encoded` and ImageNet
        dataset mean/stddev.
      additional_dense_features: `list` of DenseFeatureConfig for additional
        dense features.
    """
    self._output_size = output_size
    self._crop_size = crop_size
    self._resize_eval_groundtruth = resize_eval_groundtruth
    if (not resize_eval_groundtruth) and (groundtruth_padded_size is None):
      raise ValueError('groundtruth_padded_size ([height, width]) needs to be'
                       'specified when resize_eval_groundtruth is False.')
    self._gt_is_matting_map = gt_is_matting_map
    self._groundtruth_padded_size = groundtruth_padded_size
    self._ignore_label = ignore_label
    self._preserve_aspect_ratio = preserve_aspect_ratio

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    # dtype.
    self._dtype = dtype

    self._image_feature = image_feature
    self._additional_dense_features = additional_dense_features

  def _prepare_image_and_label(self, data):
    """Prepare normalized image and label."""
    height = data['image/height']
    width = data['image/width']

    label = tf.io.decode_image(
        data['image/segmentation/class/encoded'], channels=1)
    label = tf.reshape(label, (1, height, width))
    label = tf.cast(label, tf.float32)

    image = tf.io.decode_image(
        data[self._image_feature.feature_name],
        channels=self._image_feature.num_channels,
        dtype=tf.uint8)
    image = tf.reshape(image, (height, width, self._image_feature.num_channels))
    # Normalizes the image feature with mean and std values, which are divided
    # by 255 because an uint8 image are re-scaled automatically. Images other
    # than uint8 type will be wrongly normalized.
    image = preprocess_ops.normalize_image(
        image, [mean / 255.0 for mean in self._image_feature.mean],
        [stddev / 255.0 for stddev in self._image_feature.stddev])

    if self._additional_dense_features:
      input_list = [image]
      for feature_cfg in self._additional_dense_features:
        feature = tf.io.decode_image(
            data[feature_cfg.feature_name],
            channels=feature_cfg.num_channels,
            dtype=tf.uint8)
        feature = tf.reshape(feature, (height, width, feature_cfg.num_channels))
        feature = preprocess_ops.normalize_image(
            feature, [mean / 255.0 for mean in feature_cfg.mean],
            [stddev / 255.0 for stddev in feature_cfg.stddev])
        input_list.append(feature)
      concat_input = tf.concat(input_list, axis=2)
    else:
      concat_input = image

    if not self._preserve_aspect_ratio:
      label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
      concat_input = tf.image.resize(
          concat_input, self._output_size, method='bilinear')
      label = tf.image.resize(label, self._output_size, method='nearest')
      label = tf.reshape(label[:, :, -1], [1] + self._output_size)

    return concat_input, label

  def _parse_train_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)

    # Normalize the label into the range of 0 and 1 for matting ground-truth.
    # Note that the input ground-truth labels must be 0 to 255, and do not
    # contain ignore_label. For gt_is_matting_map case, ignore_label is only
    # used for padding the labels.
    if self._gt_is_matting_map:
      scale = tf.constant(255.0, dtype=tf.float32)
      scale = tf.expand_dims(scale, axis=0)
      scale = tf.expand_dims(scale, axis=0)
      label = tf.cast(label, tf.float32) / scale

    if self._crop_size:

      label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
      # If output_size is specified, resize image, and label to desired
      # output_size.
      if self._output_size:
        image = tf.image.resize(image, self._output_size, method='bilinear')
        label = tf.image.resize(label, self._output_size, method='nearest')

      image_mask = tf.concat([image, label], axis=2)
      image_mask_crop = tf.image.random_crop(
          image_mask, self._crop_size + [tf.shape(image_mask)[-1]])
      image = image_mask_crop[:, :, :-1]
      label = tf.reshape(image_mask_crop[:, :, -1], [1] + self._crop_size)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      image, _, label = preprocess_ops.random_horizontal_flip(
          image, masks=label)

    train_image_size = self._crop_size if self._crop_size else self._output_size
    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        train_image_size,
        train_image_size,
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]

    # Pad label and make sure the padded region assigned to the ignore label.
    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)
    label = preprocess_ops.resize_and_crop_masks(label, image_scale,
                                                 train_image_size, offset)
    label -= 1
    label = tf.where(
        tf.equal(label, -1), self._ignore_label * tf.ones_like(label), label)
    label = tf.squeeze(label, axis=0)
    valid_mask = tf.not_equal(label, self._ignore_label)

    labels = {
        'masks': label,
        'valid_masks': valid_mask,
        'image_info': image_info,
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels

  def _parse_eval_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)

    # Binarize mask if ground-truth is a matting map
    if self._gt_is_matting_map:
      label = tf.divide(tf.cast(label, dtype=tf.float32), 255.0)
      label = utils.binarize_matting_map(label)

    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image, self._output_size, self._output_size)

    if self._resize_eval_groundtruth:
      # Resizes eval masks to match input image sizes. In that case, mean IoU
      # is computed on output_size not the original size of the images.
      image_scale = image_info[2, :]
      offset = image_info[3, :]
      label = preprocess_ops.resize_and_crop_masks(label, image_scale,
                                                   self._output_size, offset)
    else:
      label = tf.image.pad_to_bounding_box(label, 0, 0,
                                           self._groundtruth_padded_size[0],
                                           self._groundtruth_padded_size[1])

    label -= 1
    label = tf.where(
        tf.equal(label, -1), self._ignore_label * tf.ones_like(label), label)
    label = tf.squeeze(label, axis=0)

    valid_mask = tf.not_equal(label, self._ignore_label)
    labels = {
        'masks': label,
        'valid_masks': valid_mask,
        'image_info': image_info
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels