File size: 17,267 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Parser for video and label datasets."""

from typing import Dict, Optional, Tuple, Union

from absl import logging
import tensorflow as tf, tf_keras

from official.vision.configs import video_classification as exp_cfg
from official.vision.dataloaders import decoder
from official.vision.dataloaders import parser
from official.vision.ops import augment
from official.vision.ops import preprocess_ops_3d

IMAGE_KEY = 'image/encoded'
LABEL_KEY = 'clip/label/index'


def process_image(image: tf.Tensor,
                  is_training: bool = True,
                  num_frames: int = 32,
                  stride: int = 1,
                  random_stride_range: int = 0,
                  num_test_clips: int = 1,
                  min_resize: int = 256,
                  crop_size: Union[int, Tuple[int, int]] = 224,
                  num_channels: int = 3,
                  num_crops: int = 1,
                  zero_centering_image: bool = False,
                  min_aspect_ratio: float = 0.5,
                  max_aspect_ratio: float = 2,
                  min_area_ratio: float = 0.49,
                  max_area_ratio: float = 1.0,
                  augmenter: Optional[augment.ImageAugment] = None,
                  seed: Optional[int] = None,
                  input_image_format: Optional[str] = 'jpeg') -> tf.Tensor:
  """Processes a serialized image tensor.

  Args:
    image: Input Tensor of shape [time-steps] and type tf.string of serialized
      frames.
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per sub clip.
    stride: Temporal stride to sample frames.
    random_stride_range: An int indicating the min and max bounds to uniformly
      sample different strides from the video. E.g., a value of 1 with stride=2
      will uniformly sample a stride in {1, 2, 3} for each video in a batch.
      Only used enabled training for the purposes of frame-rate augmentation.
      Defaults to 0, which disables random sampling.
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggregated in the batch dimension.
    min_resize: Frames are resized so that min(height, width) is min_resize.
    crop_size: Final size of the frame after cropping the resized frames.
      Optionally, specify a tuple of (crop_height, crop_width) if
      crop_height != crop_width.
    num_channels: Number of channels of the clip.
    num_crops: Number of crops to perform on the resized frames.
    zero_centering_image: If True, frames are normalized to values in [-1, 1].
      If False, values in [0, 1].
    min_aspect_ratio: The minimum aspect range for cropping.
    max_aspect_ratio: The maximum aspect range for cropping.
    min_area_ratio: The minimum area range for cropping.
    max_area_ratio: The maximum area range for cropping.
    augmenter: Image augmenter to distort each image.
    seed: A deterministic seed to use when sampling.
    input_image_format: The format of input image which could be jpeg, png or
          none for unknown or mixed datasets.

  Returns:
    Processed frames. Tensor of shape
      [num_frames * num_test_clips, crop_height, crop_width, num_channels].
  """
  # Validate parameters.
  if is_training and num_test_clips != 1:
    logging.warning(
        '`num_test_clips` %d is ignored since `is_training` is `True`.',
        num_test_clips)

  if random_stride_range < 0:
    raise ValueError('Random stride range should be >= 0, got {}'.format(
        random_stride_range))

  if input_image_format not in ('jpeg', 'png', 'none'):
    raise ValueError('Unknown input image format: {}'.format(
        input_image_format))

  if isinstance(crop_size, int):
    crop_size = (crop_size, crop_size)
  crop_height, crop_width = crop_size

  # Temporal sampler.
  if is_training:
    if random_stride_range > 0:
      # Uniformly sample different frame-rates
      stride = tf.random.uniform(
          [],
          tf.maximum(stride - random_stride_range, 1),
          stride + random_stride_range,
          dtype=tf.int32)

    # Sample random clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, True, stride,
                                              seed)
  elif num_test_clips > 1:
    # Sample linspace clips.
    image = preprocess_ops_3d.sample_linspace_sequence(image, num_test_clips,
                                                       num_frames, stride)
  else:
    # Sample middle clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, False, stride)

  # Decode JPEG string to tf.uint8.
  if image.dtype == tf.string:
    image = preprocess_ops_3d.decode_image(image, num_channels)

  if is_training:
    # Standard image data augmentation: random resized crop and random flip.
    image = preprocess_ops_3d.random_crop_resize(
        image, crop_height, crop_width, num_frames, num_channels,
        (min_aspect_ratio, max_aspect_ratio),
        (min_area_ratio, max_area_ratio))
    image = preprocess_ops_3d.random_flip_left_right(image, seed)

    if augmenter is not None:
      image = augmenter.distort(image)
  else:
    # Resize images (resize happens only if necessary to save compute).
    image = preprocess_ops_3d.resize_smallest(image, min_resize)
    # Crop of the frames.
    image = preprocess_ops_3d.crop_image(image, crop_height, crop_width, False,
                                         num_crops)

  # Cast the frames in float32, normalizing according to zero_centering_image.
  return preprocess_ops_3d.normalize_image(image, zero_centering_image)


def postprocess_image(image: tf.Tensor,
                      is_training: bool = True,
                      num_frames: int = 32,
                      num_test_clips: int = 1,
                      num_test_crops: int = 1) -> tf.Tensor:
  """Processes a batched Tensor of frames.

  The same parameters used in process should be used here.

  Args:
    image: Input Tensor of shape [batch, time-steps, height, width, 3].
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per sub clip.
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggregated in the batch dimension.
    num_test_crops: Number of test crops (1 by default). If more than 1, there
      are multiple crops for each clip at test time. If 1, there is a single
      central crop. The crops are aggregated in the batch dimension.

  Returns:
    Processed frames. Tensor of shape
      [batch * num_test_clips * num_test_crops, num_frames, height, width, 3].
  """
  num_views = num_test_clips * num_test_crops
  if num_views > 1 and not is_training:
    # In this case, multiple views are merged together in batch dimension which
    # will be batch * num_views.
    image = tf.reshape(image, [-1, num_frames] + image.shape[2:].as_list())

  return image


def process_label(label: tf.Tensor,
                  one_hot_label: bool = True,
                  num_classes: Optional[int] = None,
                  label_dtype: tf.DType = tf.int32) -> tf.Tensor:
  """Processes label Tensor."""
  # Validate parameters.
  if one_hot_label and not num_classes:
    raise ValueError(
        '`num_classes` should be given when requesting one hot label.')

  # Cast to label_dtype (default = tf.int32).
  label = tf.cast(label, dtype=label_dtype)

  if one_hot_label:
    # Replace label index by one hot representation.
    label = tf.one_hot(label, num_classes)
    if len(label.shape.as_list()) > 1:
      label = tf.reduce_sum(label, axis=0)
    if num_classes == 1:
      # The trick for single label.
      label = 1 - label

  return label


class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

  def __init__(self, image_key: str = IMAGE_KEY, label_key: str = LABEL_KEY):
    self._context_description = {
        # One integer stored in context.
        label_key: tf.io.VarLenFeature(tf.int64),
    }
    self._sequence_description = {
        # Each image is a string encoding JPEG.
        image_key: tf.io.FixedLenSequenceFeature((), tf.string),
    }

  def add_feature(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._sequence_description[feature_name] = feature_type

  def add_context(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._context_description[feature_name] = feature_type

  def decode(self, serialized_example):
    """Parses a single tf.Example into image and label tensors."""
    result = {}
    context, sequences = tf.io.parse_single_sequence_example(
        serialized_example, self._context_description,
        self._sequence_description)
    result.update(context)
    result.update(sequences)
    for key, value in result.items():
      if isinstance(value, tf.SparseTensor):
        result[key] = tf.sparse.to_dense(value)
    return result


class VideoTfdsDecoder(decoder.Decoder):
  """A tf.SequenceExample decoder for tfds video classification datasets."""

  def __init__(self, image_key: str = IMAGE_KEY, label_key: str = LABEL_KEY):
    self._image_key = image_key
    self._label_key = label_key

  def decode(self, features):
    """Decode the TFDS FeatureDict.

    Args:
      features: features from TFDS video dataset.
        See https://www.tensorflow.org/datasets/catalog/ucf101 for example.
    Returns:
      Dict of tensors.
    """
    sample_dict = {
        self._image_key: features['video'],
        self._label_key: features['label'],
    }
    return sample_dict


class Parser(parser.Parser):
  """Parses a video and label dataset."""

  def __init__(self,
               input_params: exp_cfg.DataConfig,
               image_key: str = IMAGE_KEY,
               label_key: str = LABEL_KEY):
    self._num_frames = input_params.feature_shape[0]
    self._stride = input_params.temporal_stride
    self._random_stride_range = input_params.random_stride_range
    self._num_test_clips = input_params.num_test_clips
    self._min_resize = input_params.min_image_size
    crop_height = input_params.feature_shape[1]
    crop_width = input_params.feature_shape[2]
    self._crop_size = crop_height if crop_height == crop_width else (
        crop_height, crop_width)
    self._num_channels = input_params.feature_shape[3]
    self._num_crops = input_params.num_test_crops
    self._zero_centering_image = input_params.zero_centering_image
    self._one_hot_label = input_params.one_hot
    self._num_classes = input_params.num_classes
    self._image_key = image_key
    self._label_key = label_key
    self._dtype = tf.dtypes.as_dtype(input_params.dtype)
    self._label_dtype = tf.dtypes.as_dtype(input_params.label_dtype)
    self._output_audio = input_params.output_audio
    self._min_aspect_ratio = input_params.aug_min_aspect_ratio
    self._max_aspect_ratio = input_params.aug_max_aspect_ratio
    self._min_area_ratio = input_params.aug_min_area_ratio
    self._max_area_ratio = input_params.aug_max_area_ratio
    self._input_image_format = input_params.input_image_format
    if self._output_audio:
      self._audio_feature = input_params.audio_feature
      self._audio_shape = input_params.audio_feature_shape

    aug_type = input_params.aug_type
    if aug_type is not None:
      if aug_type.type == 'autoaug':
        logging.info('Using AutoAugment.')
        self._augmenter = augment.AutoAugment(
            augmentation_name=aug_type.autoaug.augmentation_name,
            cutout_const=aug_type.autoaug.cutout_const,
            translate_const=aug_type.autoaug.translate_const)
      elif aug_type.type == 'randaug':
        logging.info('Using RandAugment.')
        self._augmenter = augment.RandAugment(
            num_layers=aug_type.randaug.num_layers,
            magnitude=aug_type.randaug.magnitude,
            cutout_const=aug_type.randaug.cutout_const,
            translate_const=aug_type.randaug.translate_const,
            prob_to_apply=aug_type.randaug.prob_to_apply,
            exclude_ops=aug_type.randaug.exclude_ops)
      else:
        raise ValueError(
            'Augmentation policy {} not supported.'.format(aug_type.type))
    else:
      self._augmenter = None

  def _parse_train_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for training."""
    # Process image and label.
    image = decoded_tensors[self._image_key]
    image = process_image(
        image=image,
        is_training=True,
        num_frames=self._num_frames,
        stride=self._stride,
        random_stride_range=self._random_stride_range,
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
        crop_size=self._crop_size,
        num_channels=self._num_channels,
        min_aspect_ratio=self._min_aspect_ratio,
        max_aspect_ratio=self._max_aspect_ratio,
        min_area_ratio=self._min_area_ratio,
        max_area_ratio=self._max_area_ratio,
        augmenter=self._augmenter,
        zero_centering_image=self._zero_centering_image,
        input_image_format=self._input_image_format)
    image = tf.cast(image, dtype=self._dtype)

    features = {'image': image}

    label = decoded_tensors[self._label_key]
    label = process_label(label, self._one_hot_label, self._num_classes,
                          self._label_dtype)

    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      # TODO(yeqing): synchronize audio/video sampling. Especially randomness.
      audio = preprocess_ops_3d.sample_sequence(
          audio, self._audio_shape[0], random=False, stride=1)
      audio = tf.ensure_shape(audio, self._audio_shape)
      features['audio'] = audio

    return features, label

  def _parse_eval_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for evaluation."""
    image = decoded_tensors[self._image_key]
    image = process_image(
        image=image,
        is_training=False,
        num_frames=self._num_frames,
        stride=self._stride,
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
        crop_size=self._crop_size,
        num_channels=self._num_channels,
        num_crops=self._num_crops,
        zero_centering_image=self._zero_centering_image,
        input_image_format=self._input_image_format)
    image = tf.cast(image, dtype=self._dtype)
    features = {'image': image}

    label = decoded_tensors[self._label_key]
    label = process_label(label, self._one_hot_label, self._num_classes,
                          self._label_dtype)

    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      audio = preprocess_ops_3d.sample_sequence(
          audio, self._audio_shape[0], random=False, stride=1)
      audio = tf.ensure_shape(audio, self._audio_shape)
      features['audio'] = audio

    return features, label


class PostBatchProcessor(object):
  """Processes a video and label dataset which is batched."""

  def __init__(self, input_params: exp_cfg.DataConfig):
    self._is_training = input_params.is_training

    self._num_frames = input_params.feature_shape[0]
    self._num_test_clips = input_params.num_test_clips
    self._num_test_crops = input_params.num_test_crops

  def __call__(self, features: Dict[str, tf.Tensor],
               label: tf.Tensor) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses a single tf.Example into image and label tensors."""
    for key in ['image']:
      if key in features:
        features[key] = postprocess_image(
            image=features[key],
            is_training=self._is_training,
            num_frames=self._num_frames,
            num_test_clips=self._num_test_clips,
            num_test_crops=self._num_test_crops)

    return features, label