Spaces:
Runtime error
Runtime error
File size: 17,267 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Parser for video and label datasets."""
from typing import Dict, Optional, Tuple, Union
from absl import logging
import tensorflow as tf, tf_keras
from official.vision.configs import video_classification as exp_cfg
from official.vision.dataloaders import decoder
from official.vision.dataloaders import parser
from official.vision.ops import augment
from official.vision.ops import preprocess_ops_3d
IMAGE_KEY = 'image/encoded'
LABEL_KEY = 'clip/label/index'
def process_image(image: tf.Tensor,
is_training: bool = True,
num_frames: int = 32,
stride: int = 1,
random_stride_range: int = 0,
num_test_clips: int = 1,
min_resize: int = 256,
crop_size: Union[int, Tuple[int, int]] = 224,
num_channels: int = 3,
num_crops: int = 1,
zero_centering_image: bool = False,
min_aspect_ratio: float = 0.5,
max_aspect_ratio: float = 2,
min_area_ratio: float = 0.49,
max_area_ratio: float = 1.0,
augmenter: Optional[augment.ImageAugment] = None,
seed: Optional[int] = None,
input_image_format: Optional[str] = 'jpeg') -> tf.Tensor:
"""Processes a serialized image tensor.
Args:
image: Input Tensor of shape [time-steps] and type tf.string of serialized
frames.
is_training: Whether or not in training mode. If True, random sample, crop
and left right flip is used.
num_frames: Number of frames per sub clip.
stride: Temporal stride to sample frames.
random_stride_range: An int indicating the min and max bounds to uniformly
sample different strides from the video. E.g., a value of 1 with stride=2
will uniformly sample a stride in {1, 2, 3} for each video in a batch.
Only used enabled training for the purposes of frame-rate augmentation.
Defaults to 0, which disables random sampling.
num_test_clips: Number of test clips (1 by default). If more than 1, this
will sample multiple linearly spaced clips within each video at test time.
If 1, then a single clip in the middle of the video is sampled. The clips
are aggregated in the batch dimension.
min_resize: Frames are resized so that min(height, width) is min_resize.
crop_size: Final size of the frame after cropping the resized frames.
Optionally, specify a tuple of (crop_height, crop_width) if
crop_height != crop_width.
num_channels: Number of channels of the clip.
num_crops: Number of crops to perform on the resized frames.
zero_centering_image: If True, frames are normalized to values in [-1, 1].
If False, values in [0, 1].
min_aspect_ratio: The minimum aspect range for cropping.
max_aspect_ratio: The maximum aspect range for cropping.
min_area_ratio: The minimum area range for cropping.
max_area_ratio: The maximum area range for cropping.
augmenter: Image augmenter to distort each image.
seed: A deterministic seed to use when sampling.
input_image_format: The format of input image which could be jpeg, png or
none for unknown or mixed datasets.
Returns:
Processed frames. Tensor of shape
[num_frames * num_test_clips, crop_height, crop_width, num_channels].
"""
# Validate parameters.
if is_training and num_test_clips != 1:
logging.warning(
'`num_test_clips` %d is ignored since `is_training` is `True`.',
num_test_clips)
if random_stride_range < 0:
raise ValueError('Random stride range should be >= 0, got {}'.format(
random_stride_range))
if input_image_format not in ('jpeg', 'png', 'none'):
raise ValueError('Unknown input image format: {}'.format(
input_image_format))
if isinstance(crop_size, int):
crop_size = (crop_size, crop_size)
crop_height, crop_width = crop_size
# Temporal sampler.
if is_training:
if random_stride_range > 0:
# Uniformly sample different frame-rates
stride = tf.random.uniform(
[],
tf.maximum(stride - random_stride_range, 1),
stride + random_stride_range,
dtype=tf.int32)
# Sample random clip.
image = preprocess_ops_3d.sample_sequence(image, num_frames, True, stride,
seed)
elif num_test_clips > 1:
# Sample linspace clips.
image = preprocess_ops_3d.sample_linspace_sequence(image, num_test_clips,
num_frames, stride)
else:
# Sample middle clip.
image = preprocess_ops_3d.sample_sequence(image, num_frames, False, stride)
# Decode JPEG string to tf.uint8.
if image.dtype == tf.string:
image = preprocess_ops_3d.decode_image(image, num_channels)
if is_training:
# Standard image data augmentation: random resized crop and random flip.
image = preprocess_ops_3d.random_crop_resize(
image, crop_height, crop_width, num_frames, num_channels,
(min_aspect_ratio, max_aspect_ratio),
(min_area_ratio, max_area_ratio))
image = preprocess_ops_3d.random_flip_left_right(image, seed)
if augmenter is not None:
image = augmenter.distort(image)
else:
# Resize images (resize happens only if necessary to save compute).
image = preprocess_ops_3d.resize_smallest(image, min_resize)
# Crop of the frames.
image = preprocess_ops_3d.crop_image(image, crop_height, crop_width, False,
num_crops)
# Cast the frames in float32, normalizing according to zero_centering_image.
return preprocess_ops_3d.normalize_image(image, zero_centering_image)
def postprocess_image(image: tf.Tensor,
is_training: bool = True,
num_frames: int = 32,
num_test_clips: int = 1,
num_test_crops: int = 1) -> tf.Tensor:
"""Processes a batched Tensor of frames.
The same parameters used in process should be used here.
Args:
image: Input Tensor of shape [batch, time-steps, height, width, 3].
is_training: Whether or not in training mode. If True, random sample, crop
and left right flip is used.
num_frames: Number of frames per sub clip.
num_test_clips: Number of test clips (1 by default). If more than 1, this
will sample multiple linearly spaced clips within each video at test time.
If 1, then a single clip in the middle of the video is sampled. The clips
are aggregated in the batch dimension.
num_test_crops: Number of test crops (1 by default). If more than 1, there
are multiple crops for each clip at test time. If 1, there is a single
central crop. The crops are aggregated in the batch dimension.
Returns:
Processed frames. Tensor of shape
[batch * num_test_clips * num_test_crops, num_frames, height, width, 3].
"""
num_views = num_test_clips * num_test_crops
if num_views > 1 and not is_training:
# In this case, multiple views are merged together in batch dimension which
# will be batch * num_views.
image = tf.reshape(image, [-1, num_frames] + image.shape[2:].as_list())
return image
def process_label(label: tf.Tensor,
one_hot_label: bool = True,
num_classes: Optional[int] = None,
label_dtype: tf.DType = tf.int32) -> tf.Tensor:
"""Processes label Tensor."""
# Validate parameters.
if one_hot_label and not num_classes:
raise ValueError(
'`num_classes` should be given when requesting one hot label.')
# Cast to label_dtype (default = tf.int32).
label = tf.cast(label, dtype=label_dtype)
if one_hot_label:
# Replace label index by one hot representation.
label = tf.one_hot(label, num_classes)
if len(label.shape.as_list()) > 1:
label = tf.reduce_sum(label, axis=0)
if num_classes == 1:
# The trick for single label.
label = 1 - label
return label
class Decoder(decoder.Decoder):
"""A tf.Example decoder for classification task."""
def __init__(self, image_key: str = IMAGE_KEY, label_key: str = LABEL_KEY):
self._context_description = {
# One integer stored in context.
label_key: tf.io.VarLenFeature(tf.int64),
}
self._sequence_description = {
# Each image is a string encoding JPEG.
image_key: tf.io.FixedLenSequenceFeature((), tf.string),
}
def add_feature(self, feature_name: str,
feature_type: Union[tf.io.VarLenFeature,
tf.io.FixedLenFeature,
tf.io.FixedLenSequenceFeature]):
self._sequence_description[feature_name] = feature_type
def add_context(self, feature_name: str,
feature_type: Union[tf.io.VarLenFeature,
tf.io.FixedLenFeature,
tf.io.FixedLenSequenceFeature]):
self._context_description[feature_name] = feature_type
def decode(self, serialized_example):
"""Parses a single tf.Example into image and label tensors."""
result = {}
context, sequences = tf.io.parse_single_sequence_example(
serialized_example, self._context_description,
self._sequence_description)
result.update(context)
result.update(sequences)
for key, value in result.items():
if isinstance(value, tf.SparseTensor):
result[key] = tf.sparse.to_dense(value)
return result
class VideoTfdsDecoder(decoder.Decoder):
"""A tf.SequenceExample decoder for tfds video classification datasets."""
def __init__(self, image_key: str = IMAGE_KEY, label_key: str = LABEL_KEY):
self._image_key = image_key
self._label_key = label_key
def decode(self, features):
"""Decode the TFDS FeatureDict.
Args:
features: features from TFDS video dataset.
See https://www.tensorflow.org/datasets/catalog/ucf101 for example.
Returns:
Dict of tensors.
"""
sample_dict = {
self._image_key: features['video'],
self._label_key: features['label'],
}
return sample_dict
class Parser(parser.Parser):
"""Parses a video and label dataset."""
def __init__(self,
input_params: exp_cfg.DataConfig,
image_key: str = IMAGE_KEY,
label_key: str = LABEL_KEY):
self._num_frames = input_params.feature_shape[0]
self._stride = input_params.temporal_stride
self._random_stride_range = input_params.random_stride_range
self._num_test_clips = input_params.num_test_clips
self._min_resize = input_params.min_image_size
crop_height = input_params.feature_shape[1]
crop_width = input_params.feature_shape[2]
self._crop_size = crop_height if crop_height == crop_width else (
crop_height, crop_width)
self._num_channels = input_params.feature_shape[3]
self._num_crops = input_params.num_test_crops
self._zero_centering_image = input_params.zero_centering_image
self._one_hot_label = input_params.one_hot
self._num_classes = input_params.num_classes
self._image_key = image_key
self._label_key = label_key
self._dtype = tf.dtypes.as_dtype(input_params.dtype)
self._label_dtype = tf.dtypes.as_dtype(input_params.label_dtype)
self._output_audio = input_params.output_audio
self._min_aspect_ratio = input_params.aug_min_aspect_ratio
self._max_aspect_ratio = input_params.aug_max_aspect_ratio
self._min_area_ratio = input_params.aug_min_area_ratio
self._max_area_ratio = input_params.aug_max_area_ratio
self._input_image_format = input_params.input_image_format
if self._output_audio:
self._audio_feature = input_params.audio_feature
self._audio_shape = input_params.audio_feature_shape
aug_type = input_params.aug_type
if aug_type is not None:
if aug_type.type == 'autoaug':
logging.info('Using AutoAugment.')
self._augmenter = augment.AutoAugment(
augmentation_name=aug_type.autoaug.augmentation_name,
cutout_const=aug_type.autoaug.cutout_const,
translate_const=aug_type.autoaug.translate_const)
elif aug_type.type == 'randaug':
logging.info('Using RandAugment.')
self._augmenter = augment.RandAugment(
num_layers=aug_type.randaug.num_layers,
magnitude=aug_type.randaug.magnitude,
cutout_const=aug_type.randaug.cutout_const,
translate_const=aug_type.randaug.translate_const,
prob_to_apply=aug_type.randaug.prob_to_apply,
exclude_ops=aug_type.randaug.exclude_ops)
else:
raise ValueError(
'Augmentation policy {} not supported.'.format(aug_type.type))
else:
self._augmenter = None
def _parse_train_data(
self, decoded_tensors: Dict[str, tf.Tensor]
) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
"""Parses data for training."""
# Process image and label.
image = decoded_tensors[self._image_key]
image = process_image(
image=image,
is_training=True,
num_frames=self._num_frames,
stride=self._stride,
random_stride_range=self._random_stride_range,
num_test_clips=self._num_test_clips,
min_resize=self._min_resize,
crop_size=self._crop_size,
num_channels=self._num_channels,
min_aspect_ratio=self._min_aspect_ratio,
max_aspect_ratio=self._max_aspect_ratio,
min_area_ratio=self._min_area_ratio,
max_area_ratio=self._max_area_ratio,
augmenter=self._augmenter,
zero_centering_image=self._zero_centering_image,
input_image_format=self._input_image_format)
image = tf.cast(image, dtype=self._dtype)
features = {'image': image}
label = decoded_tensors[self._label_key]
label = process_label(label, self._one_hot_label, self._num_classes,
self._label_dtype)
if self._output_audio:
audio = decoded_tensors[self._audio_feature]
audio = tf.cast(audio, dtype=self._dtype)
# TODO(yeqing): synchronize audio/video sampling. Especially randomness.
audio = preprocess_ops_3d.sample_sequence(
audio, self._audio_shape[0], random=False, stride=1)
audio = tf.ensure_shape(audio, self._audio_shape)
features['audio'] = audio
return features, label
def _parse_eval_data(
self, decoded_tensors: Dict[str, tf.Tensor]
) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
"""Parses data for evaluation."""
image = decoded_tensors[self._image_key]
image = process_image(
image=image,
is_training=False,
num_frames=self._num_frames,
stride=self._stride,
num_test_clips=self._num_test_clips,
min_resize=self._min_resize,
crop_size=self._crop_size,
num_channels=self._num_channels,
num_crops=self._num_crops,
zero_centering_image=self._zero_centering_image,
input_image_format=self._input_image_format)
image = tf.cast(image, dtype=self._dtype)
features = {'image': image}
label = decoded_tensors[self._label_key]
label = process_label(label, self._one_hot_label, self._num_classes,
self._label_dtype)
if self._output_audio:
audio = decoded_tensors[self._audio_feature]
audio = tf.cast(audio, dtype=self._dtype)
audio = preprocess_ops_3d.sample_sequence(
audio, self._audio_shape[0], random=False, stride=1)
audio = tf.ensure_shape(audio, self._audio_shape)
features['audio'] = audio
return features, label
class PostBatchProcessor(object):
"""Processes a video and label dataset which is batched."""
def __init__(self, input_params: exp_cfg.DataConfig):
self._is_training = input_params.is_training
self._num_frames = input_params.feature_shape[0]
self._num_test_clips = input_params.num_test_clips
self._num_test_crops = input_params.num_test_crops
def __call__(self, features: Dict[str, tf.Tensor],
label: tf.Tensor) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
"""Parses a single tf.Example into image and label tensors."""
for key in ['image']:
if key in features:
features[key] = postprocess_image(
image=features[key],
is_training=self._is_training,
num_frames=self._num_frames,
num_test_clips=self._num_test_clips,
num_test_crops=self._num_test_crops)
return features, label
|