File size: 24,896 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Definitions of MobileDet Networks."""

import dataclasses
from typing import Any, Dict, Optional, Tuple, List

import tensorflow as tf, tf_keras

from official.modeling import hyperparams
from official.vision.modeling.backbones import factory
from official.vision.modeling.backbones import mobilenet
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers


layers = tf_keras.layers


#  pylint: disable=pointless-string-statement

"""
Architecture: https://arxiv.org/abs/2004.14525.

"MobileDets: Searching for Object Detection Architectures for
Mobile Accelerators" Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin,
Gabriel Bender, Yongzhe Wang, Pieter-Jan Kindermans, Mingxing Tan, Vikas Singh,
Bo Chen

Note that `round_down_protection` flag should be set to false for scaling
of the network.
"""

MD_CPU_BLOCK_SPECS = {
    'spec_name': 'MobileDetCPU',
    # [expand_ratio] is set to 1 and [use_residual] is set to false
    # for inverted_bottleneck_no_expansion
    # [se_ratio] is set to 0.25 for all inverted_bottleneck layers
    # [activation] is set to 'hard_swish' for all applicable layers
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'use_residual', 'is_output'],
    'block_specs': [
        ('convbn', 3, 2, 16, 'hard_swish', None, None, None, False),
        # inverted_bottleneck_no_expansion
        ('invertedbottleneck', 3, 1, 8, 'hard_swish', 0.25, 1., False, True),
        ('invertedbottleneck', 3, 2, 16, 'hard_swish', 0.25, 4., False, True),
        ('invertedbottleneck', 3, 2, 32, 'hard_swish', 0.25, 8., False, False),
        ('invertedbottleneck', 3, 1, 32, 'hard_swish', 0.25, 4., True, False),
        ('invertedbottleneck', 3, 1, 32, 'hard_swish', 0.25, 4., True, False),
        ('invertedbottleneck', 3, 1, 32, 'hard_swish', 0.25, 4., True, True),
        ('invertedbottleneck', 5, 2, 72, 'hard_swish', 0.25, 8., False, False),
        ('invertedbottleneck', 3, 1, 72, 'hard_swish', 0.25, 8., True, False),
        ('invertedbottleneck', 5, 1, 72, 'hard_swish', 0.25, 4., True, False),
        ('invertedbottleneck', 3, 1, 72, 'hard_swish', 0.25, 4., True, False),
        ('invertedbottleneck', 3, 1, 72, 'hard_swish', 0.25, 8., False, False),
        ('invertedbottleneck', 3, 1, 72, 'hard_swish', 0.25, 8., True, False),
        ('invertedbottleneck', 3, 1, 72, 'hard_swish', 0.25, 8., True, False),
        ('invertedbottleneck', 3, 1, 72, 'hard_swish', 0.25, 8., True, True),
        ('invertedbottleneck', 5, 2, 104, 'hard_swish', 0.25, 8., False, False),
        ('invertedbottleneck', 5, 1, 104, 'hard_swish', 0.25, 4., True, False),
        ('invertedbottleneck', 5, 1, 104, 'hard_swish', 0.25, 4., True, False),
        ('invertedbottleneck', 3, 1, 104, 'hard_swish', 0.25, 4., True, False),
        ('invertedbottleneck', 3, 1, 144, 'hard_swish', 0.25, 8., False, True),
    ]
}

MD_DSP_BLOCK_SPECS = {
    'spec_name': 'MobileDetDSP',
    # [expand_ratio] is set to 1 and [use_residual] is set to false
    # for inverted_bottleneck_no_expansion
    # [use_depthwise] is set to False for fused_conv
    # [se_ratio] is set to None for all inverted_bottleneck layers
    # [activation] is set to 'relu6' for all applicable layers
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'input_compression_ratio', 'output_compression_ratio',
                          'use_depthwise', 'use_residual', 'is_output'],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu6',
         None, None, None, None, None, None, False),
        # inverted_bottleneck_no_expansion
        ('invertedbottleneck', 3, 1, 24, 'relu6',
         None, 1., None, None, True, False, True),
        ('invertedbottleneck', 3, 2, 32, 'relu6',
         None, 4., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 32, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 32, 'relu6',
         None, 4., None, None, True, True, False),
        ('tucker', 3, 1, 32, 'relu6',
         None, None, 0.25, 0.75, None, True, True),
        ('invertedbottleneck', 3, 2, 64, 'relu6',
         None, 8., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 64, 'relu6',
         None, 4., None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 64, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 64, 'relu6',
         None, 4., None, None, False, True, True),  # fused_conv
        ('invertedbottleneck', 3, 2, 120, 'relu6',
         None, 8., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 120, 'relu6',
         None, 4., None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 120, 'relu6',
         None, 8, None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 120, 'relu6',
         None, 8., None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 144, 'relu6',
         None, 8., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 144, 'relu6',
         None, 8., None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 144, 'relu6',
         None, 8, None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 144, 'relu6',
         None, 8., None, None, True, True, True),
        ('invertedbottleneck', 3, 2, 160, 'relu6',
         None, 4, None, None, True, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu6',
         None, 4, None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 160, 'relu6',
         None, 4., None, None, False, False, False),  # fused_conv
        ('tucker', 3, 1, 160, 'relu6',
         None, None, 0.75, 0.75, None, True, False),
        ('invertedbottleneck', 3, 1, 240, 'relu6',
         None, 8, None, None, True, False, True),
    ]
}

MD_EdgeTPU_BLOCK_SPECS = {
    'spec_name': 'MobileDetEdgeTPU',
    # [use_depthwise] is set to False for fused_conv
    # [se_ratio] is set to None for all inverted_bottleneck layers
    # [activation] is set to 'relu6' for all applicable layers
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'input_compression_ratio', 'output_compression_ratio',
                          'use_depthwise', 'use_residual', 'is_output'],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu6',
         None, None, None, None, None, None, False),
        ('tucker', 3, 1, 16, 'relu6',
         None, None, 0.25, 0.75, None, False, True),
        ('invertedbottleneck', 3, 2, 16, 'relu6',
         None, 8., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 16, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 16, 'relu6',
         None, 8., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 16, 'relu6',
         None, 4., None, None, False, True, True),  # fused_conv
        ('invertedbottleneck', 5, 2, 40, 'relu6',
         None, 8., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 40, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 40, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 40, 'relu6',
         None, 4., None, None, False, True, True),  # fused_conv
        ('invertedbottleneck', 3, 2, 72, 'relu6',
         None, 8, None, None, True, False, False),
        ('invertedbottleneck', 3, 1, 72, 'relu6',
         None, 8, None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 72, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 72, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 5, 1, 96, 'relu6',
         None, 8, None, None, True, False, False),
        ('invertedbottleneck', 5, 1, 96, 'relu6',
         None, 8, None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu6',
         None, 8, None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu6',
         None, 8, None, None, True, True, True),
        ('invertedbottleneck', 5, 2, 120, 'relu6',
         None, 8, None, None, True, False, False),
        ('invertedbottleneck', 3, 1, 120, 'relu6',
         None, 8, None, None, True, True, False),
        ('invertedbottleneck', 5, 1, 120, 'relu6',
         None, 4, None, None, True, True, False),
        ('invertedbottleneck', 3, 1, 120, 'relu6',
         None, 8, None, None, True, True, False),
        ('invertedbottleneck', 5, 1, 384, 'relu6',
         None, 8, None, None, True, False, True),
    ]
}

MD_GPU_BLOCK_SPECS = {
    'spec_name': 'MobileDetGPU',
    # [use_depthwise] is set to False for fused_conv
    # [se_ratio] is set to None for all inverted_bottleneck layers
    # [activation] is set to 'relu6' for all applicable layers
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'input_compression_ratio', 'output_compression_ratio',
                          'use_depthwise', 'use_residual', 'is_output'],
    'block_specs': [
        # block 0
        ('convbn', 3, 2, 32, 'relu6',
         None, None, None, None, None, None, False),
        # block 1
        ('tucker', 3, 1, 16, 'relu6',
         None, None, 0.25, 0.25, None, False, True),
        # block 2
        ('invertedbottleneck', 3, 2, 32, 'relu6',
         None, 8., None, None, False, False, False),  # fused_conv
        ('tucker', 3, 1, 32, 'relu6',
         None, None, 0.25, 0.25, None, True, False),
        ('tucker', 3, 1, 32, 'relu6',
         None, None, 0.25, 0.25, None, True, False),
        ('tucker', 3, 1, 32, 'relu6',
         None, None, 0.25, 0.25, None, True, True),
        # block 3
        ('invertedbottleneck', 3, 2, 64, 'relu6',
         None, 8., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 64, 'relu6',
         None, 8., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 64, 'relu6',
         None, 8., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 64, 'relu6',
         None, 4., None, None, False, True, True),  # fused_conv
        # block 4
        ('invertedbottleneck', 3, 2, 128, 'relu6',
         None, 8., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        # block 5
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 8., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 8., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 8., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 8., None, None, False, True, True),  # fused_conv
        # block 6
        ('invertedbottleneck', 3, 2, 128, 'relu6',
         None, 4., None, None, False, False, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        ('invertedbottleneck', 3, 1, 128, 'relu6',
         None, 4., None, None, False, True, False),  # fused_conv
        # block 7
        ('invertedbottleneck', 3, 1, 384, 'relu6',
         None, 8, None, None, True, False, True),
    ]
}

SUPPORTED_SPECS_MAP = {
    'MobileDetCPU': MD_CPU_BLOCK_SPECS,
    'MobileDetDSP': MD_DSP_BLOCK_SPECS,
    'MobileDetEdgeTPU': MD_EdgeTPU_BLOCK_SPECS,
    'MobileDetGPU': MD_GPU_BLOCK_SPECS,
}


@dataclasses.dataclass
class BlockSpec(hyperparams.Config):
  """A container class that specifies the block configuration for MobileDet."""

  block_fn: str = 'convbn'
  kernel_size: int = 3
  strides: int = 1
  filters: int = 32
  use_bias: bool = False
  use_normalization: bool = True
  activation: str = 'relu6'
  is_output: bool = True
  # Used for block type InvertedResConv and TuckerConvBlock.
  use_residual: bool = True
  # Used for block type InvertedResConv only.
  use_depthwise: bool = True
  expand_ratio: Optional[float] = 8.
  se_ratio: Optional[float] = None
  # Used for block type TuckerConvBlock only.
  input_compression_ratio: Optional[float] = None
  output_compression_ratio: Optional[float] = None


def block_spec_decoder(
    specs: Dict[Any, Any],
    filter_size_scale: float,
    divisible_by: int = 8) -> List[BlockSpec]:
  """Decodes specs for a block.

  Args:
    specs: A `dict` specification of block specs of a mobiledet version.
    filter_size_scale: A `float` multiplier for the filter size for all
      convolution ops. The value must be greater than zero. Typical usage will
      be to set this value in (0, 1) to reduce the number of parameters or
      computation cost of the model.
    divisible_by: An `int` that ensures all inner dimensions are divisible by
      this number.

  Returns:
    A list of `BlockSpec` that defines structure of the base network.
  """

  spec_name = specs['spec_name']
  block_spec_schema = specs['block_spec_schema']
  block_specs = specs['block_specs']

  if not block_specs:
    raise ValueError(
        'The block spec cannot be empty for {} !'.format(spec_name))

  if len(block_specs[0]) != len(block_spec_schema):
    raise ValueError('The block spec values {} do not match with '
                     'the schema {}'.format(block_specs[0], block_spec_schema))

  decoded_specs = []

  for s in block_specs:
    kw_s = dict(zip(block_spec_schema, s))
    decoded_specs.append(BlockSpec(**kw_s))

  for ds in decoded_specs:
    if ds.filters:
      ds.filters = nn_layers.round_filters(filters=ds.filters,
                                           multiplier=filter_size_scale,
                                           divisor=divisible_by,
                                           round_down_protect=False,
                                           min_depth=8)

  return decoded_specs


@tf_keras.utils.register_keras_serializable(package='Vision')
class MobileDet(tf_keras.Model):
  """Creates a MobileDet family model."""

  def __init__(
      self,
      model_id: str = 'MobileDetCPU',
      filter_size_scale: float = 1.0,
      input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      # The followings are for hyper-parameter tuning.
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      # The followings should be kept the same most of the times.
      min_depth: int = 8,
      divisible_by: int = 8,
      regularize_depthwise: bool = False,
      use_sync_bn: bool = False,
      **kwargs):
    """Initializes a MobileDet model.

    Args:
      model_id: A `str` of MobileDet version. The supported values are
        `MobileDetCPU`, `MobileDetDSP`, `MobileDetEdgeTPU`, `MobileDetGPU`.
      filter_size_scale: A `float` of multiplier for the filters (number of
        channels) for all convolution ops. The value must be greater than zero.
        Typical usage will be to set this value in (0, 1) to reduce the number
        of parameters or computation cost of the model.
      input_specs: A `tf_keras.layers.InputSpec` of specs of the input tensor.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      min_depth: An `int` of minimum depth (number of channels) for all
        convolution ops. Enforced when filter_size_scale < 1, and not an active
        constraint when filter_size_scale >= 1.
      divisible_by: An `int` that ensures all inner dimensions are divisible by
        this number.
      regularize_depthwise: If Ture, apply regularization on depthwise.
      use_sync_bn: If True, use synchronized batch normalization.
      **kwargs: Additional keyword arguments to be passed.
    """
    if model_id not in SUPPORTED_SPECS_MAP:
      raise ValueError('The MobileDet version {} '
                       'is not supported'.format(model_id))

    if filter_size_scale <= 0:
      raise ValueError('filter_size_scale is not greater than zero.')

    self._model_id = model_id
    self._input_specs = input_specs
    self._filter_size_scale = filter_size_scale
    self._min_depth = min_depth
    self._divisible_by = divisible_by
    self._regularize_depthwise = regularize_depthwise
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon

    inputs = tf_keras.Input(shape=input_specs.shape[1:])

    block_specs = SUPPORTED_SPECS_MAP.get(model_id)
    self._decoded_specs = block_spec_decoder(
        specs=block_specs,
        filter_size_scale=self._filter_size_scale,
        divisible_by=self._get_divisible_by())

    x, endpoints, next_endpoint_level = self._mobiledet_base(inputs=inputs)

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}

    super(MobileDet, self).__init__(
        inputs=inputs, outputs=endpoints, **kwargs)

  def _get_divisible_by(self):
    return self._divisible_by

  def _mobiledet_base(self,
                      inputs: tf.Tensor
                      ) -> Tuple[tf.Tensor, Dict[str, tf.Tensor], int]:
    """Builds the base MobileDet architecture.

    Args:
      inputs: A `tf.Tensor` of shape `[batch_size, height, width, channels]`.

    Returns:
      A tuple of output Tensor and dictionary that collects endpoints.
    """

    input_shape = inputs.get_shape().as_list()
    if len(input_shape) != 4:
      raise ValueError('Expected rank 4 input, was: %d' % len(input_shape))

    net = inputs
    endpoints = {}
    endpoint_level = 1
    for i, block_def in enumerate(self._decoded_specs):
      block_name = 'block_group_{}_{}'.format(block_def.block_fn, i)

      if block_def.block_fn == 'convbn':

        net = mobilenet.Conv2DBNBlock(
            filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=block_def.strides,
            activation=block_def.activation,
            use_bias=block_def.use_bias,
            use_normalization=block_def.use_normalization,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon
        )(net)

      elif block_def.block_fn == 'invertedbottleneck':

        in_filters = net.shape.as_list()[-1]
        net = nn_blocks.InvertedBottleneckBlock(
            in_filters=in_filters,
            out_filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=block_def.strides,
            expand_ratio=block_def.expand_ratio,
            se_ratio=block_def.se_ratio,
            se_inner_activation=block_def.activation,
            se_gating_activation='sigmoid',
            se_round_down_protect=False,
            expand_se_in_filters=True,
            activation=block_def.activation,
            use_depthwise=block_def.use_depthwise,
            use_residual=block_def.use_residual,
            regularize_depthwise=self._regularize_depthwise,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
            divisible_by=self._get_divisible_by()
        )(net)

      elif block_def.block_fn == 'tucker':

        in_filters = net.shape.as_list()[-1]
        net = nn_blocks.TuckerConvBlock(
            in_filters=in_filters,
            out_filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=block_def.strides,
            input_compression_ratio=block_def.input_compression_ratio,
            output_compression_ratio=block_def.output_compression_ratio,
            activation=block_def.activation,
            use_residual=block_def.use_residual,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
            divisible_by=self._get_divisible_by()
        )(net)

      else:
        raise ValueError('Unknown block type {} for layer {}'.format(
            block_def.block_fn, i))

      net = tf_keras.layers.Activation('linear', name=block_name)(net)

      if block_def.is_output:
        endpoints[str(endpoint_level)] = net
        endpoint_level += 1

    return net, endpoints, endpoint_level

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
        'filter_size_scale': self._filter_size_scale,
        'min_depth': self._min_depth,
        'divisible_by': self._divisible_by,
        'regularize_depthwise': self._regularize_depthwise,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs


@factory.register_backbone_builder('mobiledet')
def build_mobiledet(
    input_specs: tf_keras.layers.InputSpec,
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
    l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
  """Builds MobileDet backbone from a config."""
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
  assert backbone_type == 'mobiledet', (f'Inconsistent backbone type '
                                        f'{backbone_type}')

  return MobileDet(
      model_id=backbone_cfg.model_id,
      filter_size_scale=backbone_cfg.filter_size_scale,
      input_specs=input_specs,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)