File size: 40,975 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of MobileNet Networks."""

import dataclasses
from typing import Optional, Dict, Any, Tuple

# Import libraries
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers

layers = tf_keras.layers


#  pylint: disable=pointless-string-statement


@tf_keras.utils.register_keras_serializable(package='Vision')
class Conv2DBNBlock(tf_keras.layers.Layer):
  """A convolution block with batch normalization."""

  def __init__(
      self,
      filters: int,
      kernel_size: int = 3,
      strides: int = 1,
      use_bias: bool = False,
      use_explicit_padding: bool = False,
      activation: str = 'relu6',
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      use_normalization: bool = True,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      **kwargs):
    """A convolution block with batch normalization.

    Args:
      filters: An `int` number of filters for the first two convolutions. Note
        that the third and final convolution will use 4 times as many filters.
      kernel_size: An `int` specifying the height and width of the 2D
        convolution window.
      strides: An `int` of block stride. If greater than 1, this block will
        ultimately downsample the input.
      use_bias: If True, use bias in the convolution layer.
      use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
        inputs so that the output dimensions are the same as if 'SAME' padding
        were used.
      activation: A `str` name of the activation function.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      use_normalization: If True, use batch normalization.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(Conv2DBNBlock, self).__init__(**kwargs)
    self._filters = filters
    self._kernel_size = kernel_size
    self._strides = strides
    self._activation = activation
    self._use_bias = use_bias
    self._use_explicit_padding = use_explicit_padding
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_normalization = use_normalization
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._norm = tf_keras.layers.BatchNormalization

    if use_explicit_padding and kernel_size > 1:
      self._padding = 'valid'
    else:
      self._padding = 'same'
    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1

  def get_config(self):
    config = {
        'filters': self._filters,
        'strides': self._strides,
        'kernel_size': self._kernel_size,
        'use_bias': self._use_bias,
        'use_explicit_padding': self._use_explicit_padding,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'use_normalization': self._use_normalization,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    base_config = super(Conv2DBNBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    if self._use_explicit_padding and self._kernel_size > 1:
      padding_size = nn_layers.get_padding_for_kernel_size(self._kernel_size)
      self._pad = tf_keras.layers.ZeroPadding2D(padding_size)
    self._conv0 = tf_keras.layers.Conv2D(
        filters=self._filters,
        kernel_size=self._kernel_size,
        strides=self._strides,
        padding=self._padding,
        use_bias=self._use_bias,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    if self._use_normalization:
      self._norm0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          synchronized=self._use_sync_bn)
    self._activation_layer = tf_utils.get_activation(
        self._activation, use_keras_layer=True)

    super(Conv2DBNBlock, self).build(input_shape)

  def call(self, inputs, training=None):
    if self._use_explicit_padding and self._kernel_size > 1:
      inputs = self._pad(inputs)
    x = self._conv0(inputs)
    if self._use_normalization:
      x = self._norm0(x)
    return self._activation_layer(x)

"""
Architecture: https://arxiv.org/abs/1704.04861.

"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications" Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
"""
MNV1_BLOCK_SPECS = {
    'spec_name': 'MobileNetV1',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides',
                          'filters', 'is_output'],
    'block_specs': [
        ('convbn', 3, 2, 32, False),
        ('depsepconv', 3, 1, 64, False),
        ('depsepconv', 3, 2, 128, False),
        ('depsepconv', 3, 1, 128, True),
        ('depsepconv', 3, 2, 256, False),
        ('depsepconv', 3, 1, 256, True),
        ('depsepconv', 3, 2, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, True),
        ('depsepconv', 3, 2, 1024, False),
        ('depsepconv', 3, 1, 1024, True),
    ]
}

"""
Architecture: https://arxiv.org/abs/1801.04381

"MobileNetV2: Inverted Residuals and Linear Bottlenecks"
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
"""
MNV2_BLOCK_SPECS = {
    'spec_name': 'MobileNetV2',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'expand_ratio', 'is_output'],
    'block_specs': [
        ('convbn', 3, 2, 32, None, False),
        ('invertedbottleneck', 3, 1, 16, 1., False),
        ('invertedbottleneck', 3, 2, 24, 6., False),
        ('invertedbottleneck', 3, 1, 24, 6., True),
        ('invertedbottleneck', 3, 2, 32, 6., False),
        ('invertedbottleneck', 3, 1, 32, 6., False),
        ('invertedbottleneck', 3, 1, 32, 6., True),
        ('invertedbottleneck', 3, 2, 64, 6., False),
        ('invertedbottleneck', 3, 1, 64, 6., False),
        ('invertedbottleneck', 3, 1, 64, 6., False),
        ('invertedbottleneck', 3, 1, 64, 6., False),
        ('invertedbottleneck', 3, 1, 96, 6., False),
        ('invertedbottleneck', 3, 1, 96, 6., False),
        ('invertedbottleneck', 3, 1, 96, 6., True),
        ('invertedbottleneck', 3, 2, 160, 6., False),
        ('invertedbottleneck', 3, 1, 160, 6., False),
        ('invertedbottleneck', 3, 1, 160, 6., False),
        ('invertedbottleneck', 3, 1, 320, 6., True),
        ('convbn', 1, 1, 1280, None, False),
    ]
}

"""
Architecture: https://arxiv.org/abs/1905.02244

"Searching for MobileNetV3"
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam
"""
MNV3Large_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3Large',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'use_normalization', 'use_bias', 'is_output'],
    'block_specs': [
        ('convbn', 3, 2, 16,
         'hard_swish', None, None, True, False, False),
        ('invertedbottleneck', 3, 1, 16,
         'relu', None, 1., None, False, False),
        ('invertedbottleneck', 3, 2, 24,
         'relu', None, 4., None, False, False),
        ('invertedbottleneck', 3, 1, 24,
         'relu', None, 3., None, False, True),
        ('invertedbottleneck', 5, 2, 40,
         'relu', 0.25, 3., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'relu', 0.25, 3., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'relu', 0.25, 3., None, False, True),
        ('invertedbottleneck', 3, 2, 80,
         'hard_swish', None, 6., None, False, False),
        ('invertedbottleneck', 3, 1, 80,
         'hard_swish', None, 2.5, None, False, False),
        ('invertedbottleneck', 3, 1, 80,
         'hard_swish', None, 2.3, None, False, False),
        ('invertedbottleneck', 3, 1, 80,
         'hard_swish', None, 2.3, None, False, False),
        ('invertedbottleneck', 3, 1, 112,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 3, 1, 112,
         'hard_swish', 0.25, 6., None, False, True),
        ('invertedbottleneck', 5, 2, 160,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 160,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 160,
         'hard_swish', 0.25, 6., None, False, True),
        ('convbn', 1, 1, 960,
         'hard_swish', None, None, True, False, False),
        ('gpooling', None, None, None,
         None, None, None, None, None, False),
        ('convbn', 1, 1, 1280,
         'hard_swish', None, None, False, True, False),
    ]
}

MNV3Small_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3Small',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'use_normalization', 'use_bias', 'is_output'],
    'block_specs': [
        ('convbn', 3, 2, 16,
         'hard_swish', None, None, True, False, False),
        ('invertedbottleneck', 3, 2, 16,
         'relu', 0.25, 1, None, False, True),
        ('invertedbottleneck', 3, 2, 24,
         'relu', None, 72. / 16, None, False, False),
        ('invertedbottleneck', 3, 1, 24,
         'relu', None, 88. / 24, None, False, True),
        ('invertedbottleneck', 5, 2, 40,
         'hard_swish', 0.25, 4., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 48,
         'hard_swish', 0.25, 3., None, False, False),
        ('invertedbottleneck', 5, 1, 48,
         'hard_swish', 0.25, 3., None, False, True),
        ('invertedbottleneck', 5, 2, 96,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 96,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 96,
         'hard_swish', 0.25, 6., None, False, True),
        ('convbn', 1, 1, 576,
         'hard_swish', None, None, True, False, False),
        ('gpooling', None, None, None,
         None, None, None, None, None, False),
        ('convbn', 1, 1, 1024,
         'hard_swish', None, None, False, True, False),
    ]
}

"""
The EdgeTPU version is taken from
github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
"""
MNV3EdgeTPU_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3EdgeTPU',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
                          'use_residual', 'use_depthwise', 'is_output'],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu', None, None, None, None, False),
        ('invertedbottleneck', 3, 1, 16, 'relu', None, 1., True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', None, 8., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, True),
        ('invertedbottleneck', 3, 2, 48, 'relu', None, 8., True, False, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, True),
        ('invertedbottleneck', 3, 2, 96, 'relu', None, 8., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 8., False, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, True),
        ('invertedbottleneck', 5, 2, 160, 'relu', None, 8., True, True, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 192, 'relu', None, 8., True, True, True),
        ('convbn', 1, 1, 1280, 'relu', None, None, None, None, False),
    ]
}

"""
Architecture: https://arxiv.org/pdf/2008.08178.pdf

"Discovering Multi-Hardware Mobile Models via Architecture Search"
Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang,
Achille Brighton, Pieter-Jan Kindermans, Hanxiao Liu,
Berkin Akin, Suyog Gupta, and Andrew Howard
"""
MNMultiMAX_BLOCK_SPECS = {
    'spec_name': 'MobileNetMultiMAX',
    'block_spec_schema': [
        'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
        'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
    ],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu', None, True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, True),
        ('invertedbottleneck', 5, 2, 64, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, True),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 4., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, True),
        ('invertedbottleneck', 3, 2, 160, 'relu', 6., None, False, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 5., None, False, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, True),
        ('convbn', 1, 1, 960, 'relu', None, True, False, False),
        ('gpooling', None, None, None, None, None, None, None, False),
        # Remove bias and add batch norm for the last layer to support QAT
        # and achieve slightly better accuracy.
        ('convbn', 1, 1, 1280, 'relu', None, True, False, False),
    ]
}

MNMultiAVG_BLOCK_SPECS = {
    'spec_name': 'MobileNetMultiAVG',
    'block_spec_schema': [
        'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
        'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
    ],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu', None, True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', 2., None, False, True),
        ('invertedbottleneck', 5, 2, 64, 'relu', 5., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, True),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 4., None, False, True),
        ('invertedbottleneck', 3, 2, 192, 'relu', 6., None, False, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, True),
        ('convbn', 1, 1, 960, 'relu', None, True, False, False),
        ('gpooling', None, None, None, None, None, None, None, False),
        # Remove bias and add batch norm for the last layer to support QAT
        # and achieve slightly better accuracy.
        ('convbn', 1, 1, 1280, 'relu', None, True, False, False),
    ]
}

# Similar to MobileNetMultiAVG and used for segmentation task.
# Reduced the filters by a factor of 2 in the last block.
MNMultiAVG_SEG_BLOCK_SPECS = {
    'spec_name':
        'MobileNetMultiAVGSeg',
    'block_spec_schema': [
        'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
        'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
    ],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu', None, True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', 2., True, False, True),
        ('invertedbottleneck', 5, 2, 64, 'relu', 5., True, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., True, False, True),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 6., True, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 4., True, False, True),
        ('invertedbottleneck', 3, 2, 192, 'relu', 6., True, False, False),
        ('invertedbottleneck', 5, 1, 96, 'relu', 2., True, False, False),
        ('invertedbottleneck', 5, 1, 96, 'relu', 4., True, False, False),
        ('invertedbottleneck', 5, 1, 96, 'relu', 4., True, False, True),
        ('convbn', 1, 1, 448, 'relu', None, True, False, True),
        ('gpooling', None, None, None, None, None, None, None, False),
        # Remove bias and add batch norm for the last layer to support QAT
        # and achieve slightly better accuracy.
        ('convbn', 1, 1, 1280, 'relu', None, True, False, False),
    ]
}

# Similar to MobileNetMultiMax and used for segmentation task.
# Reduced the filters by a factor of 2 in the last block.
MNMultiMAX_SEG_BLOCK_SPECS = {
    'spec_name':
        'MobileNetMultiMAXSeg',
    'block_spec_schema': [
        'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
        'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
    ],
    'block_specs': [
        ('convbn', 3, 2, 32, 'relu', None, True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., True, False, True),
        ('invertedbottleneck', 5, 2, 64, 'relu', 6., True, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, True),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 4., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 6., True, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, True),
        ('invertedbottleneck', 3, 2, 160, 'relu', 6., True, False, False),
        ('invertedbottleneck', 5, 1, 96, 'relu', 2., True, False, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', 4., True, False, False),
        ('invertedbottleneck', 5, 1, 96, 'relu', 320.0 / 96, True, False, True),
        ('convbn', 1, 1, 448, 'relu', None, True, False, True),
        ('gpooling', None, None, None, None, None, None, None, False),
        # Remove bias and add batch norm for the last layer to support QAT
        # and achieve slightly better accuracy.
        ('convbn', 1, 1, 1280, 'relu', None, True, False, False),
    ]
}

# A smaller MNV3Small, with reduced filters for the last few layers
MNV3SmallReducedFilters = {
    'spec_name':
        'MobilenetV3SmallReducedFilters',
    'block_spec_schema': [
        'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
        'se_ratio', 'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
    ],
    'block_specs': [
        ('convbn', 3, 2, 16, 'hard_swish', None, None, True, False, False),
        ('invertedbottleneck', 3, 2, 16, 'relu', 0.25, 1, None, False, True),
        ('invertedbottleneck', 3, 2, 24, 'relu', None, 72. / 16, None, False,
         False),
        ('invertedbottleneck', 3, 1, 24, 'relu', None, 88. / 24, None, False,
         True),
        ('invertedbottleneck', 5, 2, 40, 'hard_swish', 0.25, 4, None, False,
         False),
        ('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6, None, False,
         False),
        ('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6, None, False,
         False),
        ('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3, None, False,
         False),
        ('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3, None, False,
         True),
        # Layers below are different from MobileNetV3Small and have
        # half as many filters
        ('invertedbottleneck', 5, 2, 48, 'hard_swish', 0.25, 3, None, False,
         False),
        ('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 6, None, False,
         False),
        ('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 6, None, False,
         True),
        ('convbn', 1, 1, 288, 'hard_swish', None, None, True, False, False),
        ('gpooling', None, None, None, None, None, None, None, None, False),
        ('convbn', 1, 1, 1024, 'hard_swish', None, None, False, True, False),
    ]
}

SUPPORTED_SPECS_MAP = {
    'MobileNetV1': MNV1_BLOCK_SPECS,
    'MobileNetV2': MNV2_BLOCK_SPECS,
    'MobileNetV3Large': MNV3Large_BLOCK_SPECS,
    'MobileNetV3Small': MNV3Small_BLOCK_SPECS,
    'MobileNetV3EdgeTPU': MNV3EdgeTPU_BLOCK_SPECS,
    'MobileNetMultiMAX': MNMultiMAX_BLOCK_SPECS,
    'MobileNetMultiAVG': MNMultiAVG_BLOCK_SPECS,
    'MobileNetMultiAVGSeg': MNMultiAVG_SEG_BLOCK_SPECS,
    'MobileNetMultiMAXSeg': MNMultiMAX_SEG_BLOCK_SPECS,
    'MobileNetV3SmallReducedFilters': MNV3SmallReducedFilters,
}


@dataclasses.dataclass
class BlockSpec(hyperparams.Config):
  """A container class that specifies the block configuration for MobileNet."""

  block_fn: str = 'convbn'
  kernel_size: int = 3
  strides: int = 1
  filters: int = 32
  use_bias: bool = False
  use_normalization: bool = True
  activation: str = 'relu6'
  # Used for block type InvertedResConv.
  expand_ratio: Optional[float] = 6.
  # Used for block type InvertedResConv with SE.
  se_ratio: Optional[float] = None
  use_depthwise: bool = True
  use_residual: bool = True
  is_output: bool = True


def block_spec_decoder(
    specs: Dict[Any, Any],
    filter_size_scale: float,
    # Set to 1 for mobilenetv1.
    divisible_by: int = 8,
    finegrain_classification_mode: bool = True):
  """Decodes specs for a block.

  Args:
    specs: A `dict` specification of block specs of a mobilenet version.
    filter_size_scale: A `float` multiplier for the filter size for all
      convolution ops. The value must be greater than zero. Typical usage will
      be to set this value in (0, 1) to reduce the number of parameters or
      computation cost of the model.
    divisible_by: An `int` that ensures all inner dimensions are divisible by
      this number.
    finegrain_classification_mode: If True, the model will keep the last layer
      large even for small multipliers, following
      https://arxiv.org/abs/1801.04381.

  Returns:
    A list of `BlockSpec` that defines structure of the base network.
  """

  spec_name = specs['spec_name']
  block_spec_schema = specs['block_spec_schema']
  block_specs = specs['block_specs']

  if not block_specs:
    raise ValueError(
        'The block spec cannot be empty for {} !'.format(spec_name))

  if len(block_specs[0]) != len(block_spec_schema):
    raise ValueError('The block spec values {} do not match with '
                     'the schema {}'.format(block_specs[0], block_spec_schema))

  decoded_specs = []

  for s in block_specs:
    kw_s = dict(zip(block_spec_schema, s))
    decoded_specs.append(BlockSpec(**kw_s))

  # This adjustment applies to V2 and V3
  if (spec_name != 'MobileNetV1'
      and finegrain_classification_mode
      and filter_size_scale < 1.0):
    decoded_specs[-1].filters /= filter_size_scale  # pytype: disable=annotation-type-mismatch

  for ds in decoded_specs:
    if ds.filters:
      ds.filters = nn_layers.round_filters(filters=ds.filters,
                                           multiplier=filter_size_scale,
                                           divisor=divisible_by,
                                           min_depth=8)

  return decoded_specs


@tf_keras.utils.register_keras_serializable(package='Vision')
class MobileNet(tf_keras.Model):
  """Creates a MobileNet family model."""

  def __init__(
      self,
      model_id: str = 'MobileNetV2',
      filter_size_scale: float = 1.0,
      input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      # The followings are for hyper-parameter tuning.
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      # The followings should be kept the same most of the times.
      output_stride: Optional[int] = None,
      min_depth: int = 8,
      # divisible is not used in MobileNetV1.
      divisible_by: int = 8,
      stochastic_depth_drop_rate: float = 0.0,
      regularize_depthwise: bool = False,
      use_sync_bn: bool = False,
      # finegrain is not used in MobileNetV1.
      finegrain_classification_mode: bool = True,
      output_intermediate_endpoints: bool = False,
      **kwargs):
    """Initializes a MobileNet model.

    Args:
      model_id: A `str` of MobileNet version. The supported values are
        `MobileNetV1`, `MobileNetV2`, `MobileNetV3Large`, `MobileNetV3Small`,
        `MobileNetV3EdgeTPU`, `MobileNetMultiMAX` and `MobileNetMultiAVG`.
      filter_size_scale: A `float` of multiplier for the filters (number of
        channels) for all convolution ops. The value must be greater than zero.
        Typical usage will be to set this value in (0, 1) to reduce the number
        of parameters or computation cost of the model.
      input_specs: A `tf_keras.layers.InputSpec` of specs of the input tensor.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      output_stride: An `int` that specifies the requested ratio of input to
        output spatial resolution. If not None, then we invoke atrous
        convolution if necessary to prevent the network from reducing the
        spatial resolution of activation maps. Allowed values are 8 (accurate
        fully convolutional mode), 16 (fast fully convolutional mode), 32
        (classification mode).
      min_depth: An `int` of minimum depth (number of channels) for all
        convolution ops. Enforced when filter_size_scale < 1, and not an active
        constraint when filter_size_scale >= 1.
      divisible_by: An `int` that ensures all inner dimensions are divisible by
        this number.
      stochastic_depth_drop_rate: A `float` of drop rate for drop connect layer.
      regularize_depthwise: If Ture, apply regularization on depthwise.
      use_sync_bn: If True, use synchronized batch normalization.
      finegrain_classification_mode: If True, the model will keep the last layer
        large even for small multipliers, following
        https://arxiv.org/abs/1801.04381.
      output_intermediate_endpoints: A `bool` of whether or not output the
        intermediate endpoints.
      **kwargs: Additional keyword arguments to be passed.
    """
    if model_id not in SUPPORTED_SPECS_MAP:
      raise ValueError('The MobileNet version {} '
                       'is not supported'.format(model_id))

    if filter_size_scale <= 0:
      raise ValueError('filter_size_scale is not greater than zero.')

    if output_stride is not None:
      if model_id == 'MobileNetV1':
        if output_stride not in [8, 16, 32]:
          raise ValueError('Only allowed output_stride values are 8, 16, 32.')
      else:
        if output_stride == 0 or (output_stride > 1 and output_stride % 2):
          raise ValueError('Output stride must be None, 1 or a multiple of 2.')

    self._model_id = model_id
    self._input_specs = input_specs
    self._filter_size_scale = filter_size_scale
    self._min_depth = min_depth
    self._output_stride = output_stride
    self._divisible_by = divisible_by
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._regularize_depthwise = regularize_depthwise
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._finegrain_classification_mode = finegrain_classification_mode
    self._output_intermediate_endpoints = output_intermediate_endpoints

    inputs = tf_keras.Input(shape=input_specs.shape[1:])

    block_specs = SUPPORTED_SPECS_MAP.get(model_id)
    self._decoded_specs = block_spec_decoder(
        specs=block_specs,
        filter_size_scale=self._filter_size_scale,
        divisible_by=self._get_divisible_by(),
        finegrain_classification_mode=self._finegrain_classification_mode)

    x, endpoints, next_endpoint_level = self._mobilenet_base(inputs=inputs)

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
    # Don't include the final layer in `self._output_specs` to support decoders.
    endpoints[str(next_endpoint_level)] = x

    super(MobileNet, self).__init__(
        inputs=inputs, outputs=endpoints, **kwargs)

  def _get_divisible_by(self):
    if self._model_id == 'MobileNetV1':
      return 1
    else:
      return self._divisible_by

  def _mobilenet_base(self,
                      inputs: tf.Tensor
                      ) -> Tuple[tf.Tensor, Dict[str, tf.Tensor], int]:
    """Builds the base MobileNet architecture.

    Args:
      inputs: A `tf.Tensor` of shape `[batch_size, height, width, channels]`.

    Returns:
      A tuple of output Tensor and dictionary that collects endpoints.
    """

    input_shape = inputs.get_shape().as_list()
    if len(input_shape) != 4:
      raise ValueError('Expected rank 4 input, was: %d' % len(input_shape))

    # The current_stride variable keeps track of the output stride of the
    # activations, i.e., the running product of convolution strides up to the
    # current network layer. This allows us to invoke atrous convolution
    # whenever applying the next convolution would result in the activations
    # having output stride larger than the target output_stride.
    current_stride = 1

    # The atrous convolution rate parameter.
    rate = 1

    net = inputs
    endpoints = {}
    endpoint_level = 2
    for i, block_def in enumerate(self._decoded_specs):
      block_name = 'block_group_{}_{}'.format(block_def.block_fn, i)
      # A small catch for gpooling block with None strides
      if not block_def.strides:
        block_def.strides = 1
      if (self._output_stride is not None and
          current_stride == self._output_stride):
        # If we have reached the target output_stride, then we need to employ
        # atrous convolution with stride=1 and multiply the atrous rate by the
        # current unit's stride for use in subsequent layers.
        layer_stride = 1
        layer_rate = rate
        rate *= block_def.strides
      else:
        layer_stride = block_def.strides
        layer_rate = 1
        current_stride *= block_def.strides

      intermediate_endpoints = {}
      if block_def.block_fn == 'convbn':

        net = Conv2DBNBlock(
            filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=block_def.strides,
            activation=block_def.activation,
            use_bias=block_def.use_bias,
            use_normalization=block_def.use_normalization,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon
        )(net)

      elif block_def.block_fn == 'depsepconv':
        net = nn_blocks.DepthwiseSeparableConvBlock(
            filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=layer_stride,
            activation=block_def.activation,
            dilation_rate=layer_rate,
            regularize_depthwise=self._regularize_depthwise,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
        )(net)

      elif block_def.block_fn == 'invertedbottleneck':
        use_rate = rate
        if layer_rate > 1 and block_def.kernel_size != 1:
          # We will apply atrous rate in the following cases:
          # 1) When kernel_size is not in params, the operation then uses
          #   default kernel size 3x3.
          # 2) When kernel_size is in params, and if the kernel_size is not
          #   equal to (1, 1) (there is no need to apply atrous convolution to
          #   any 1x1 convolution).
          use_rate = layer_rate
        in_filters = net.shape.as_list()[-1]
        block = nn_blocks.InvertedBottleneckBlock(
            in_filters=in_filters,
            out_filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=layer_stride,
            expand_ratio=block_def.expand_ratio,
            se_ratio=block_def.se_ratio,
            expand_se_in_filters=True,
            se_gating_activation='hard_sigmoid',
            activation=block_def.activation,
            use_depthwise=block_def.use_depthwise,
            use_residual=block_def.use_residual,
            dilation_rate=use_rate,
            regularize_depthwise=self._regularize_depthwise,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
            stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
            divisible_by=self._get_divisible_by(),
            output_intermediate_endpoints=self._output_intermediate_endpoints,
        )
        if self._output_intermediate_endpoints:
          net, intermediate_endpoints = block(net)
        else:
          net = block(net)

      elif block_def.block_fn == 'gpooling':
        net = layers.GlobalAveragePooling2D(keepdims=True)(net)

      else:
        raise ValueError('Unknown block type {} for layer {}'.format(
            block_def.block_fn, i))

      net = tf_keras.layers.Activation('linear', name=block_name)(net)

      if block_def.is_output:
        endpoints[str(endpoint_level)] = net
        for key, tensor in intermediate_endpoints.items():
          endpoints[str(endpoint_level) + '/' + key] = tensor
        if current_stride != self._output_stride:
          endpoint_level += 1

    if str(endpoint_level) in endpoints:
      endpoint_level += 1
    return net, endpoints, endpoint_level

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
        'filter_size_scale': self._filter_size_scale,
        'min_depth': self._min_depth,
        'output_stride': self._output_stride,
        'divisible_by': self._divisible_by,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'regularize_depthwise': self._regularize_depthwise,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'finegrain_classification_mode': self._finegrain_classification_mode,
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs


@factory.register_backbone_builder('mobilenet')
def build_mobilenet(
    input_specs: tf_keras.layers.InputSpec,
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
    l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
  """Builds MobileNet backbone from a config."""
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
  assert backbone_type == 'mobilenet', (f'Inconsistent backbone type '
                                        f'{backbone_type}')

  return MobileNet(
      model_id=backbone_cfg.model_id,
      filter_size_scale=backbone_cfg.filter_size_scale,
      input_specs=input_specs,
      stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
      output_stride=backbone_cfg.output_stride,
      output_intermediate_endpoints=backbone_cfg.output_intermediate_endpoints,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)