Spaces:
Runtime error
Runtime error
File size: 40,975 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of MobileNet Networks."""
import dataclasses
from typing import Optional, Dict, Any, Tuple
# Import libraries
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers
layers = tf_keras.layers
# pylint: disable=pointless-string-statement
@tf_keras.utils.register_keras_serializable(package='Vision')
class Conv2DBNBlock(tf_keras.layers.Layer):
"""A convolution block with batch normalization."""
def __init__(
self,
filters: int,
kernel_size: int = 3,
strides: int = 1,
use_bias: bool = False,
use_explicit_padding: bool = False,
activation: str = 'relu6',
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
use_normalization: bool = True,
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
**kwargs):
"""A convolution block with batch normalization.
Args:
filters: An `int` number of filters for the first two convolutions. Note
that the third and final convolution will use 4 times as many filters.
kernel_size: An `int` specifying the height and width of the 2D
convolution window.
strides: An `int` of block stride. If greater than 1, this block will
ultimately downsample the input.
use_bias: If True, use bias in the convolution layer.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
activation: A `str` name of the activation function.
kernel_initializer: A `str` for kernel initializer of convolutional
layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default to None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
Default to None.
use_normalization: If True, use batch normalization.
use_sync_bn: If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
**kwargs: Additional keyword arguments to be passed.
"""
super(Conv2DBNBlock, self).__init__(**kwargs)
self._filters = filters
self._kernel_size = kernel_size
self._strides = strides
self._activation = activation
self._use_bias = use_bias
self._use_explicit_padding = use_explicit_padding
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._use_normalization = use_normalization
self._use_sync_bn = use_sync_bn
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._norm = tf_keras.layers.BatchNormalization
if use_explicit_padding and kernel_size > 1:
self._padding = 'valid'
else:
self._padding = 'same'
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
def get_config(self):
config = {
'filters': self._filters,
'strides': self._strides,
'kernel_size': self._kernel_size,
'use_bias': self._use_bias,
'use_explicit_padding': self._use_explicit_padding,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'activation': self._activation,
'use_sync_bn': self._use_sync_bn,
'use_normalization': self._use_normalization,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon
}
base_config = super(Conv2DBNBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
if self._use_explicit_padding and self._kernel_size > 1:
padding_size = nn_layers.get_padding_for_kernel_size(self._kernel_size)
self._pad = tf_keras.layers.ZeroPadding2D(padding_size)
self._conv0 = tf_keras.layers.Conv2D(
filters=self._filters,
kernel_size=self._kernel_size,
strides=self._strides,
padding=self._padding,
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
if self._use_normalization:
self._norm0 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)
self._activation_layer = tf_utils.get_activation(
self._activation, use_keras_layer=True)
super(Conv2DBNBlock, self).build(input_shape)
def call(self, inputs, training=None):
if self._use_explicit_padding and self._kernel_size > 1:
inputs = self._pad(inputs)
x = self._conv0(inputs)
if self._use_normalization:
x = self._norm0(x)
return self._activation_layer(x)
"""
Architecture: https://arxiv.org/abs/1704.04861.
"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications" Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
"""
MNV1_BLOCK_SPECS = {
'spec_name': 'MobileNetV1',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides',
'filters', 'is_output'],
'block_specs': [
('convbn', 3, 2, 32, False),
('depsepconv', 3, 1, 64, False),
('depsepconv', 3, 2, 128, False),
('depsepconv', 3, 1, 128, True),
('depsepconv', 3, 2, 256, False),
('depsepconv', 3, 1, 256, True),
('depsepconv', 3, 2, 512, False),
('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512, True),
('depsepconv', 3, 2, 1024, False),
('depsepconv', 3, 1, 1024, True),
]
}
"""
Architecture: https://arxiv.org/abs/1801.04381
"MobileNetV2: Inverted Residuals and Linear Bottlenecks"
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
"""
MNV2_BLOCK_SPECS = {
'spec_name': 'MobileNetV2',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'expand_ratio', 'is_output'],
'block_specs': [
('convbn', 3, 2, 32, None, False),
('invertedbottleneck', 3, 1, 16, 1., False),
('invertedbottleneck', 3, 2, 24, 6., False),
('invertedbottleneck', 3, 1, 24, 6., True),
('invertedbottleneck', 3, 2, 32, 6., False),
('invertedbottleneck', 3, 1, 32, 6., False),
('invertedbottleneck', 3, 1, 32, 6., True),
('invertedbottleneck', 3, 2, 64, 6., False),
('invertedbottleneck', 3, 1, 64, 6., False),
('invertedbottleneck', 3, 1, 64, 6., False),
('invertedbottleneck', 3, 1, 64, 6., False),
('invertedbottleneck', 3, 1, 96, 6., False),
('invertedbottleneck', 3, 1, 96, 6., False),
('invertedbottleneck', 3, 1, 96, 6., True),
('invertedbottleneck', 3, 2, 160, 6., False),
('invertedbottleneck', 3, 1, 160, 6., False),
('invertedbottleneck', 3, 1, 160, 6., False),
('invertedbottleneck', 3, 1, 320, 6., True),
('convbn', 1, 1, 1280, None, False),
]
}
"""
Architecture: https://arxiv.org/abs/1905.02244
"Searching for MobileNetV3"
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam
"""
MNV3Large_BLOCK_SPECS = {
'spec_name': 'MobileNetV3Large',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio',
'use_normalization', 'use_bias', 'is_output'],
'block_specs': [
('convbn', 3, 2, 16,
'hard_swish', None, None, True, False, False),
('invertedbottleneck', 3, 1, 16,
'relu', None, 1., None, False, False),
('invertedbottleneck', 3, 2, 24,
'relu', None, 4., None, False, False),
('invertedbottleneck', 3, 1, 24,
'relu', None, 3., None, False, True),
('invertedbottleneck', 5, 2, 40,
'relu', 0.25, 3., None, False, False),
('invertedbottleneck', 5, 1, 40,
'relu', 0.25, 3., None, False, False),
('invertedbottleneck', 5, 1, 40,
'relu', 0.25, 3., None, False, True),
('invertedbottleneck', 3, 2, 80,
'hard_swish', None, 6., None, False, False),
('invertedbottleneck', 3, 1, 80,
'hard_swish', None, 2.5, None, False, False),
('invertedbottleneck', 3, 1, 80,
'hard_swish', None, 2.3, None, False, False),
('invertedbottleneck', 3, 1, 80,
'hard_swish', None, 2.3, None, False, False),
('invertedbottleneck', 3, 1, 112,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 3, 1, 112,
'hard_swish', 0.25, 6., None, False, True),
('invertedbottleneck', 5, 2, 160,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 160,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 160,
'hard_swish', 0.25, 6., None, False, True),
('convbn', 1, 1, 960,
'hard_swish', None, None, True, False, False),
('gpooling', None, None, None,
None, None, None, None, None, False),
('convbn', 1, 1, 1280,
'hard_swish', None, None, False, True, False),
]
}
MNV3Small_BLOCK_SPECS = {
'spec_name': 'MobileNetV3Small',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio',
'use_normalization', 'use_bias', 'is_output'],
'block_specs': [
('convbn', 3, 2, 16,
'hard_swish', None, None, True, False, False),
('invertedbottleneck', 3, 2, 16,
'relu', 0.25, 1, None, False, True),
('invertedbottleneck', 3, 2, 24,
'relu', None, 72. / 16, None, False, False),
('invertedbottleneck', 3, 1, 24,
'relu', None, 88. / 24, None, False, True),
('invertedbottleneck', 5, 2, 40,
'hard_swish', 0.25, 4., None, False, False),
('invertedbottleneck', 5, 1, 40,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 40,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 48,
'hard_swish', 0.25, 3., None, False, False),
('invertedbottleneck', 5, 1, 48,
'hard_swish', 0.25, 3., None, False, True),
('invertedbottleneck', 5, 2, 96,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 96,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 96,
'hard_swish', 0.25, 6., None, False, True),
('convbn', 1, 1, 576,
'hard_swish', None, None, True, False, False),
('gpooling', None, None, None,
None, None, None, None, None, False),
('convbn', 1, 1, 1024,
'hard_swish', None, None, False, True, False),
]
}
"""
The EdgeTPU version is taken from
github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
"""
MNV3EdgeTPU_BLOCK_SPECS = {
'spec_name': 'MobileNetV3EdgeTPU',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio',
'use_residual', 'use_depthwise', 'is_output'],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, None, None, None, False),
('invertedbottleneck', 3, 1, 16, 'relu', None, 1., True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', None, 8., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, True),
('invertedbottleneck', 3, 2, 48, 'relu', None, 8., True, False, False),
('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, True),
('invertedbottleneck', 3, 2, 96, 'relu', None, 8., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 8., False, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, True),
('invertedbottleneck', 5, 2, 160, 'relu', None, 8., True, True, False),
('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 192, 'relu', None, 8., True, True, True),
('convbn', 1, 1, 1280, 'relu', None, None, None, None, False),
]
}
"""
Architecture: https://arxiv.org/pdf/2008.08178.pdf
"Discovering Multi-Hardware Mobile Models via Architecture Search"
Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang,
Achille Brighton, Pieter-Jan Kindermans, Hanxiao Liu,
Berkin Akin, Suyog Gupta, and Andrew Howard
"""
MNMultiMAX_BLOCK_SPECS = {
'spec_name': 'MobileNetMultiMAX',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 4., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, True),
('invertedbottleneck', 3, 2, 160, 'relu', 6., None, False, False),
('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 5., None, False, False),
('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, True),
('convbn', 1, 1, 960, 'relu', None, True, False, False),
('gpooling', None, None, None, None, None, None, None, False),
# Remove bias and add batch norm for the last layer to support QAT
# and achieve slightly better accuracy.
('convbn', 1, 1, 1280, 'relu', None, True, False, False),
]
}
MNMultiAVG_BLOCK_SPECS = {
'spec_name': 'MobileNetMultiAVG',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', 2., None, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 5., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 4., None, False, True),
('invertedbottleneck', 3, 2, 192, 'relu', 6., None, False, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, True),
('convbn', 1, 1, 960, 'relu', None, True, False, False),
('gpooling', None, None, None, None, None, None, None, False),
# Remove bias and add batch norm for the last layer to support QAT
# and achieve slightly better accuracy.
('convbn', 1, 1, 1280, 'relu', None, True, False, False),
]
}
# Similar to MobileNetMultiAVG and used for segmentation task.
# Reduced the filters by a factor of 2 in the last block.
MNMultiAVG_SEG_BLOCK_SPECS = {
'spec_name':
'MobileNetMultiAVGSeg',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', 2., True, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 5., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., True, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 4., True, False, True),
('invertedbottleneck', 3, 2, 192, 'relu', 6., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 2., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 4., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 4., True, False, True),
('convbn', 1, 1, 448, 'relu', None, True, False, True),
('gpooling', None, None, None, None, None, None, None, False),
# Remove bias and add batch norm for the last layer to support QAT
# and achieve slightly better accuracy.
('convbn', 1, 1, 1280, 'relu', None, True, False, False),
]
}
# Similar to MobileNetMultiMax and used for segmentation task.
# Reduced the filters by a factor of 2 in the last block.
MNMultiMAX_SEG_BLOCK_SPECS = {
'spec_name':
'MobileNetMultiMAXSeg',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., True, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 4., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, True),
('invertedbottleneck', 3, 2, 160, 'relu', 6., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 2., True, False, False),
('invertedbottleneck', 3, 1, 96, 'relu', 4., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 320.0 / 96, True, False, True),
('convbn', 1, 1, 448, 'relu', None, True, False, True),
('gpooling', None, None, None, None, None, None, None, False),
# Remove bias and add batch norm for the last layer to support QAT
# and achieve slightly better accuracy.
('convbn', 1, 1, 1280, 'relu', None, True, False, False),
]
}
# A smaller MNV3Small, with reduced filters for the last few layers
MNV3SmallReducedFilters = {
'spec_name':
'MobilenetV3SmallReducedFilters',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'se_ratio', 'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 16, 'hard_swish', None, None, True, False, False),
('invertedbottleneck', 3, 2, 16, 'relu', 0.25, 1, None, False, True),
('invertedbottleneck', 3, 2, 24, 'relu', None, 72. / 16, None, False,
False),
('invertedbottleneck', 3, 1, 24, 'relu', None, 88. / 24, None, False,
True),
('invertedbottleneck', 5, 2, 40, 'hard_swish', 0.25, 4, None, False,
False),
('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6, None, False,
False),
('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6, None, False,
False),
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3, None, False,
False),
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3, None, False,
True),
# Layers below are different from MobileNetV3Small and have
# half as many filters
('invertedbottleneck', 5, 2, 48, 'hard_swish', 0.25, 3, None, False,
False),
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 6, None, False,
False),
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 6, None, False,
True),
('convbn', 1, 1, 288, 'hard_swish', None, None, True, False, False),
('gpooling', None, None, None, None, None, None, None, None, False),
('convbn', 1, 1, 1024, 'hard_swish', None, None, False, True, False),
]
}
SUPPORTED_SPECS_MAP = {
'MobileNetV1': MNV1_BLOCK_SPECS,
'MobileNetV2': MNV2_BLOCK_SPECS,
'MobileNetV3Large': MNV3Large_BLOCK_SPECS,
'MobileNetV3Small': MNV3Small_BLOCK_SPECS,
'MobileNetV3EdgeTPU': MNV3EdgeTPU_BLOCK_SPECS,
'MobileNetMultiMAX': MNMultiMAX_BLOCK_SPECS,
'MobileNetMultiAVG': MNMultiAVG_BLOCK_SPECS,
'MobileNetMultiAVGSeg': MNMultiAVG_SEG_BLOCK_SPECS,
'MobileNetMultiMAXSeg': MNMultiMAX_SEG_BLOCK_SPECS,
'MobileNetV3SmallReducedFilters': MNV3SmallReducedFilters,
}
@dataclasses.dataclass
class BlockSpec(hyperparams.Config):
"""A container class that specifies the block configuration for MobileNet."""
block_fn: str = 'convbn'
kernel_size: int = 3
strides: int = 1
filters: int = 32
use_bias: bool = False
use_normalization: bool = True
activation: str = 'relu6'
# Used for block type InvertedResConv.
expand_ratio: Optional[float] = 6.
# Used for block type InvertedResConv with SE.
se_ratio: Optional[float] = None
use_depthwise: bool = True
use_residual: bool = True
is_output: bool = True
def block_spec_decoder(
specs: Dict[Any, Any],
filter_size_scale: float,
# Set to 1 for mobilenetv1.
divisible_by: int = 8,
finegrain_classification_mode: bool = True):
"""Decodes specs for a block.
Args:
specs: A `dict` specification of block specs of a mobilenet version.
filter_size_scale: A `float` multiplier for the filter size for all
convolution ops. The value must be greater than zero. Typical usage will
be to set this value in (0, 1) to reduce the number of parameters or
computation cost of the model.
divisible_by: An `int` that ensures all inner dimensions are divisible by
this number.
finegrain_classification_mode: If True, the model will keep the last layer
large even for small multipliers, following
https://arxiv.org/abs/1801.04381.
Returns:
A list of `BlockSpec` that defines structure of the base network.
"""
spec_name = specs['spec_name']
block_spec_schema = specs['block_spec_schema']
block_specs = specs['block_specs']
if not block_specs:
raise ValueError(
'The block spec cannot be empty for {} !'.format(spec_name))
if len(block_specs[0]) != len(block_spec_schema):
raise ValueError('The block spec values {} do not match with '
'the schema {}'.format(block_specs[0], block_spec_schema))
decoded_specs = []
for s in block_specs:
kw_s = dict(zip(block_spec_schema, s))
decoded_specs.append(BlockSpec(**kw_s))
# This adjustment applies to V2 and V3
if (spec_name != 'MobileNetV1'
and finegrain_classification_mode
and filter_size_scale < 1.0):
decoded_specs[-1].filters /= filter_size_scale # pytype: disable=annotation-type-mismatch
for ds in decoded_specs:
if ds.filters:
ds.filters = nn_layers.round_filters(filters=ds.filters,
multiplier=filter_size_scale,
divisor=divisible_by,
min_depth=8)
return decoded_specs
@tf_keras.utils.register_keras_serializable(package='Vision')
class MobileNet(tf_keras.Model):
"""Creates a MobileNet family model."""
def __init__(
self,
model_id: str = 'MobileNetV2',
filter_size_scale: float = 1.0,
input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
shape=[None, None, None, 3]),
# The followings are for hyper-parameter tuning.
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
# The followings should be kept the same most of the times.
output_stride: Optional[int] = None,
min_depth: int = 8,
# divisible is not used in MobileNetV1.
divisible_by: int = 8,
stochastic_depth_drop_rate: float = 0.0,
regularize_depthwise: bool = False,
use_sync_bn: bool = False,
# finegrain is not used in MobileNetV1.
finegrain_classification_mode: bool = True,
output_intermediate_endpoints: bool = False,
**kwargs):
"""Initializes a MobileNet model.
Args:
model_id: A `str` of MobileNet version. The supported values are
`MobileNetV1`, `MobileNetV2`, `MobileNetV3Large`, `MobileNetV3Small`,
`MobileNetV3EdgeTPU`, `MobileNetMultiMAX` and `MobileNetMultiAVG`.
filter_size_scale: A `float` of multiplier for the filters (number of
channels) for all convolution ops. The value must be greater than zero.
Typical usage will be to set this value in (0, 1) to reduce the number
of parameters or computation cost of the model.
input_specs: A `tf_keras.layers.InputSpec` of specs of the input tensor.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_initializer: A `str` for kernel initializer of convolutional
layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default to None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
Default to None.
output_stride: An `int` that specifies the requested ratio of input to
output spatial resolution. If not None, then we invoke atrous
convolution if necessary to prevent the network from reducing the
spatial resolution of activation maps. Allowed values are 8 (accurate
fully convolutional mode), 16 (fast fully convolutional mode), 32
(classification mode).
min_depth: An `int` of minimum depth (number of channels) for all
convolution ops. Enforced when filter_size_scale < 1, and not an active
constraint when filter_size_scale >= 1.
divisible_by: An `int` that ensures all inner dimensions are divisible by
this number.
stochastic_depth_drop_rate: A `float` of drop rate for drop connect layer.
regularize_depthwise: If Ture, apply regularization on depthwise.
use_sync_bn: If True, use synchronized batch normalization.
finegrain_classification_mode: If True, the model will keep the last layer
large even for small multipliers, following
https://arxiv.org/abs/1801.04381.
output_intermediate_endpoints: A `bool` of whether or not output the
intermediate endpoints.
**kwargs: Additional keyword arguments to be passed.
"""
if model_id not in SUPPORTED_SPECS_MAP:
raise ValueError('The MobileNet version {} '
'is not supported'.format(model_id))
if filter_size_scale <= 0:
raise ValueError('filter_size_scale is not greater than zero.')
if output_stride is not None:
if model_id == 'MobileNetV1':
if output_stride not in [8, 16, 32]:
raise ValueError('Only allowed output_stride values are 8, 16, 32.')
else:
if output_stride == 0 or (output_stride > 1 and output_stride % 2):
raise ValueError('Output stride must be None, 1 or a multiple of 2.')
self._model_id = model_id
self._input_specs = input_specs
self._filter_size_scale = filter_size_scale
self._min_depth = min_depth
self._output_stride = output_stride
self._divisible_by = divisible_by
self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
self._regularize_depthwise = regularize_depthwise
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._use_sync_bn = use_sync_bn
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._finegrain_classification_mode = finegrain_classification_mode
self._output_intermediate_endpoints = output_intermediate_endpoints
inputs = tf_keras.Input(shape=input_specs.shape[1:])
block_specs = SUPPORTED_SPECS_MAP.get(model_id)
self._decoded_specs = block_spec_decoder(
specs=block_specs,
filter_size_scale=self._filter_size_scale,
divisible_by=self._get_divisible_by(),
finegrain_classification_mode=self._finegrain_classification_mode)
x, endpoints, next_endpoint_level = self._mobilenet_base(inputs=inputs)
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
# Don't include the final layer in `self._output_specs` to support decoders.
endpoints[str(next_endpoint_level)] = x
super(MobileNet, self).__init__(
inputs=inputs, outputs=endpoints, **kwargs)
def _get_divisible_by(self):
if self._model_id == 'MobileNetV1':
return 1
else:
return self._divisible_by
def _mobilenet_base(self,
inputs: tf.Tensor
) -> Tuple[tf.Tensor, Dict[str, tf.Tensor], int]:
"""Builds the base MobileNet architecture.
Args:
inputs: A `tf.Tensor` of shape `[batch_size, height, width, channels]`.
Returns:
A tuple of output Tensor and dictionary that collects endpoints.
"""
input_shape = inputs.get_shape().as_list()
if len(input_shape) != 4:
raise ValueError('Expected rank 4 input, was: %d' % len(input_shape))
# The current_stride variable keeps track of the output stride of the
# activations, i.e., the running product of convolution strides up to the
# current network layer. This allows us to invoke atrous convolution
# whenever applying the next convolution would result in the activations
# having output stride larger than the target output_stride.
current_stride = 1
# The atrous convolution rate parameter.
rate = 1
net = inputs
endpoints = {}
endpoint_level = 2
for i, block_def in enumerate(self._decoded_specs):
block_name = 'block_group_{}_{}'.format(block_def.block_fn, i)
# A small catch for gpooling block with None strides
if not block_def.strides:
block_def.strides = 1
if (self._output_stride is not None and
current_stride == self._output_stride):
# If we have reached the target output_stride, then we need to employ
# atrous convolution with stride=1 and multiply the atrous rate by the
# current unit's stride for use in subsequent layers.
layer_stride = 1
layer_rate = rate
rate *= block_def.strides
else:
layer_stride = block_def.strides
layer_rate = 1
current_stride *= block_def.strides
intermediate_endpoints = {}
if block_def.block_fn == 'convbn':
net = Conv2DBNBlock(
filters=block_def.filters,
kernel_size=block_def.kernel_size,
strides=block_def.strides,
activation=block_def.activation,
use_bias=block_def.use_bias,
use_normalization=block_def.use_normalization,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon
)(net)
elif block_def.block_fn == 'depsepconv':
net = nn_blocks.DepthwiseSeparableConvBlock(
filters=block_def.filters,
kernel_size=block_def.kernel_size,
strides=layer_stride,
activation=block_def.activation,
dilation_rate=layer_rate,
regularize_depthwise=self._regularize_depthwise,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon,
)(net)
elif block_def.block_fn == 'invertedbottleneck':
use_rate = rate
if layer_rate > 1 and block_def.kernel_size != 1:
# We will apply atrous rate in the following cases:
# 1) When kernel_size is not in params, the operation then uses
# default kernel size 3x3.
# 2) When kernel_size is in params, and if the kernel_size is not
# equal to (1, 1) (there is no need to apply atrous convolution to
# any 1x1 convolution).
use_rate = layer_rate
in_filters = net.shape.as_list()[-1]
block = nn_blocks.InvertedBottleneckBlock(
in_filters=in_filters,
out_filters=block_def.filters,
kernel_size=block_def.kernel_size,
strides=layer_stride,
expand_ratio=block_def.expand_ratio,
se_ratio=block_def.se_ratio,
expand_se_in_filters=True,
se_gating_activation='hard_sigmoid',
activation=block_def.activation,
use_depthwise=block_def.use_depthwise,
use_residual=block_def.use_residual,
dilation_rate=use_rate,
regularize_depthwise=self._regularize_depthwise,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon,
stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
divisible_by=self._get_divisible_by(),
output_intermediate_endpoints=self._output_intermediate_endpoints,
)
if self._output_intermediate_endpoints:
net, intermediate_endpoints = block(net)
else:
net = block(net)
elif block_def.block_fn == 'gpooling':
net = layers.GlobalAveragePooling2D(keepdims=True)(net)
else:
raise ValueError('Unknown block type {} for layer {}'.format(
block_def.block_fn, i))
net = tf_keras.layers.Activation('linear', name=block_name)(net)
if block_def.is_output:
endpoints[str(endpoint_level)] = net
for key, tensor in intermediate_endpoints.items():
endpoints[str(endpoint_level) + '/' + key] = tensor
if current_stride != self._output_stride:
endpoint_level += 1
if str(endpoint_level) in endpoints:
endpoint_level += 1
return net, endpoints, endpoint_level
def get_config(self):
config_dict = {
'model_id': self._model_id,
'filter_size_scale': self._filter_size_scale,
'min_depth': self._min_depth,
'output_stride': self._output_stride,
'divisible_by': self._divisible_by,
'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
'regularize_depthwise': self._regularize_depthwise,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon,
'finegrain_classification_mode': self._finegrain_classification_mode,
}
return config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def output_specs(self):
"""A dict of {level: TensorShape} pairs for the model output."""
return self._output_specs
@factory.register_backbone_builder('mobilenet')
def build_mobilenet(
input_specs: tf_keras.layers.InputSpec,
backbone_config: hyperparams.Config,
norm_activation_config: hyperparams.Config,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
"""Builds MobileNet backbone from a config."""
backbone_type = backbone_config.type
backbone_cfg = backbone_config.get()
assert backbone_type == 'mobilenet', (f'Inconsistent backbone type '
f'{backbone_type}')
return MobileNet(
model_id=backbone_cfg.model_id,
filter_size_scale=backbone_cfg.filter_size_scale,
input_specs=input_specs,
stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
output_stride=backbone_cfg.output_stride,
output_intermediate_endpoints=backbone_cfg.output_intermediate_endpoints,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)
|