File size: 15,840 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of Residual Networks with Deeplab modifications."""

from typing import Callable, Optional, Tuple, List

import numpy as np
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers

layers = tf_keras.layers

# Specifications for different ResNet variants.
# Each entry specifies block configurations of the particular ResNet variant.
# Each element in the block configuration is in the following format:
# (block_fn, num_filters, block_repeats)
RESNET_SPECS = {
    50: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 6),
        ('bottleneck', 512, 3),
    ],
    101: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 23),
        ('bottleneck', 512, 3),
    ],
    152: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 8),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
    200: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 24),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
}


@tf_keras.utils.register_keras_serializable(package='Vision')
class DilatedResNet(tf_keras.Model):
  """Creates a ResNet model with Deeplabv3 modifications.

  This backbone is suitable for semantic segmentation. This implements
    Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam.
    Rethinking Atrous Convolution for Semantic Image Segmentation.
    (https://arxiv.org/pdf/1706.05587)
  """

  def __init__(
      self,
      model_id: int,
      output_stride: int,
      input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      stem_type: str = 'v0',
      resnetd_shortcut: bool = False,
      replace_stem_max_pool: bool = False,
      se_ratio: Optional[float] = None,
      init_stochastic_depth_rate: float = 0.0,
      multigrid: Optional[Tuple[int]] = None,
      last_stage_repeats: int = 1,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      **kwargs):
    """Initializes a ResNet model with DeepLab modification.

    Args:
      model_id: An `int` specifies depth of ResNet backbone model.
      output_stride: An `int` of output stride, ratio of input to output
        resolution.
      input_specs: A `tf_keras.layers.InputSpec` of the input tensor.
      stem_type: A `str` of stem type. Can be `v0` or `v1`. `v1` replaces 7x7
        conv by 3 3x3 convs.
      resnetd_shortcut: A `bool` of whether to use ResNet-D shortcut in
        downsampling blocks.
      replace_stem_max_pool: A `bool` of whether to replace the max pool in stem
        with a stride-2 conv,
      se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
      init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
      multigrid: A tuple of the same length as the number of blocks in the last
        resnet stage.
      last_stage_repeats: An `int` that specifies how many times last stage is
        repeated.
      activation: A `str` name of the activation function.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A str for kernel initializer of convolutional layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      **kwargs: Additional keyword arguments to be passed.
    """
    self._model_id = model_id
    self._output_stride = output_stride
    self._input_specs = input_specs
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._norm = layers.BatchNormalization
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._stem_type = stem_type
    self._resnetd_shortcut = resnetd_shortcut
    self._replace_stem_max_pool = replace_stem_max_pool
    self._se_ratio = se_ratio
    self._init_stochastic_depth_rate = init_stochastic_depth_rate

    if tf_keras.backend.image_data_format() == 'channels_last':
      bn_axis = -1
    else:
      bn_axis = 1

    # Build ResNet.
    inputs = tf_keras.Input(shape=input_specs.shape[1:])

    if stem_type == 'v0':
      x = layers.Conv2D(
          filters=64,
          kernel_size=7,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              inputs)
      x = self._norm(
          axis=bn_axis,
          momentum=norm_momentum,
          epsilon=norm_epsilon,
          synchronized=use_sync_bn)(
              x)
      x = tf_utils.get_activation(activation)(x)
    elif stem_type == 'v1':
      x = layers.Conv2D(
          filters=64,
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              inputs)
      x = self._norm(
          axis=bn_axis,
          momentum=norm_momentum,
          epsilon=norm_epsilon,
          synchronized=use_sync_bn)(
              x)
      x = tf_utils.get_activation(activation)(x)
      x = layers.Conv2D(
          filters=64,
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis,
          momentum=norm_momentum,
          epsilon=norm_epsilon,
          synchronized=use_sync_bn)(
              x)
      x = tf_utils.get_activation(activation)(x)
      x = layers.Conv2D(
          filters=128,
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis,
          momentum=norm_momentum,
          epsilon=norm_epsilon,
          synchronized=use_sync_bn)(
              x)
      x = tf_utils.get_activation(activation)(x)
    else:
      raise ValueError('Stem type {} not supported.'.format(stem_type))

    if replace_stem_max_pool:
      x = layers.Conv2D(
          filters=64,
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis,
          momentum=norm_momentum,
          epsilon=norm_epsilon,
          synchronized=use_sync_bn)(
              x)
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
    else:
      x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)

    normal_resnet_stage = int(np.math.log2(self._output_stride)) - 2

    endpoints = {}
    for i in range(normal_resnet_stage + 1):
      spec = RESNET_SPECS[model_id][i]
      if spec[0] == 'bottleneck':
        block_fn = nn_blocks.BottleneckBlock
      else:
        raise ValueError('Block fn `{}` is not supported.'.format(spec[0]))
      x = self._block_group(
          inputs=x,
          filters=spec[1],
          strides=(1 if i == 0 else 2),
          dilation_rate=1,
          block_fn=block_fn,
          block_repeats=spec[2],
          stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
              self._init_stochastic_depth_rate, i + 2, 4 + last_stage_repeats),
          name='block_group_l{}'.format(i + 2))
      endpoints[str(i + 2)] = x

    dilation_rate = 2
    for i in range(normal_resnet_stage + 1, 3 + last_stage_repeats):
      spec = RESNET_SPECS[model_id][i] if i < 3 else RESNET_SPECS[model_id][-1]
      if spec[0] == 'bottleneck':
        block_fn = nn_blocks.BottleneckBlock
      else:
        raise ValueError('Block fn `{}` is not supported.'.format(spec[0]))
      x = self._block_group(
          inputs=x,
          filters=spec[1],
          strides=1,
          dilation_rate=dilation_rate,
          block_fn=block_fn,
          block_repeats=spec[2],
          stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
              self._init_stochastic_depth_rate, i + 2, 4 + last_stage_repeats),
          multigrid=multigrid if i >= 3 else None,
          name='block_group_l{}'.format(i + 2))
      dilation_rate *= 2

    endpoints[str(normal_resnet_stage + 2)] = x

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}

    super(DilatedResNet, self).__init__(
        inputs=inputs, outputs=endpoints, **kwargs)

  def _block_group(self,
                   inputs: tf.Tensor,
                   filters: int,
                   strides: int,
                   dilation_rate: int,
                   block_fn: Callable[..., tf_keras.layers.Layer],
                   block_repeats: int = 1,
                   stochastic_depth_drop_rate: float = 0.0,
                   multigrid: Optional[List[int]] = None,
                   name: str = 'block_group'):
    """Creates one group of blocks for the ResNet model.

    Deeplab applies strides at the last block.

    Args:
      inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
      filters: An `int` off number of filters for the first convolution of the
        layer.
      strides: An `int` of stride to use for the first convolution of the layer.
        If greater than 1, this layer will downsample the input.
      dilation_rate: An `int` of diluted convolution rates.
      block_fn: Either `nn_blocks.ResidualBlock` or `nn_blocks.BottleneckBlock`.
      block_repeats: An `int` of number of blocks contained in the layer.
      stochastic_depth_drop_rate: A `float` of drop rate of the current block
        group.
      multigrid: A list of `int` or None. If specified, dilation rates for each
        block is scaled up by its corresponding factor in the multigrid.
      name: A `str` name for the block.

    Returns:
      The output `tf.Tensor` of the block layer.
    """
    if multigrid is not None and len(multigrid) != block_repeats:
      raise ValueError('multigrid has to match number of block_repeats')

    if multigrid is None:
      multigrid = [1] * block_repeats

    # TODO(arashwan): move striding at the of the block.
    x = block_fn(
        filters=filters,
        strides=strides,
        dilation_rate=dilation_rate * multigrid[0],
        use_projection=True,
        stochastic_depth_drop_rate=stochastic_depth_drop_rate,
        se_ratio=self._se_ratio,
        resnetd_shortcut=self._resnetd_shortcut,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=self._activation,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon)(
            inputs)
    for i in range(1, block_repeats):
      x = block_fn(
          filters=filters,
          strides=1,
          dilation_rate=dilation_rate * multigrid[i],
          use_projection=False,
          stochastic_depth_drop_rate=stochastic_depth_drop_rate,
          resnetd_shortcut=self._resnetd_shortcut,
          se_ratio=self._se_ratio,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._activation,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon)(
              x)

    return tf.identity(x, name=name)

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
        'output_stride': self._output_stride,
        'stem_type': self._stem_type,
        'resnetd_shortcut': self._resnetd_shortcut,
        'replace_stem_max_pool': self._replace_stem_max_pool,
        'se_ratio': self._se_ratio,
        'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs


@factory.register_backbone_builder('dilated_resnet')
def build_dilated_resnet(
    input_specs: tf_keras.layers.InputSpec,
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
    l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model:  # pytype: disable=annotation-type-mismatch  # typed-keras
  """Builds ResNet backbone from a config."""
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
  assert backbone_type == 'dilated_resnet', (f'Inconsistent backbone type '
                                             f'{backbone_type}')

  return DilatedResNet(
      model_id=backbone_cfg.model_id,
      output_stride=backbone_cfg.output_stride,
      input_specs=input_specs,
      stem_type=backbone_cfg.stem_type,
      resnetd_shortcut=backbone_cfg.resnetd_shortcut,
      replace_stem_max_pool=backbone_cfg.replace_stem_max_pool,
      se_ratio=backbone_cfg.se_ratio,
      init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
      multigrid=backbone_cfg.multigrid,
      last_stage_repeats=backbone_cfg.last_stage_repeats,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)