File size: 5,555 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for resnet."""

# Import libraries
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras

from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.vision.modeling.backbones import resnet


class ResNetTest(parameterized.TestCase, tf.test.TestCase):

  @parameterized.parameters(
      (128, 10, 1),
      (128, 18, 1),
      (128, 26, 1),
      (128, 34, 1),
      (128, 50, 4),
      (128, 101, 4),
      (128, 152, 4),
  )
  def test_network_creation(self, input_size, model_id,
                            endpoint_filter_scale):
    """Test creation of ResNet family models."""
    resnet_params = {
        10: 4915904,
        18: 11190464,
        26: 17465024,
        34: 21306048,
        50: 23561152,
        101: 42605504,
        152: 58295232,
    }
    tf_keras.backend.set_image_data_format('channels_last')

    network = resnet.ResNet(model_id=model_id)
    self.assertEqual(network.count_params(), resnet_params[model_id])

    inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
    endpoints = network(inputs)

    self.assertAllEqual(
        [1, input_size / 2**2, input_size / 2**2, 64 * endpoint_filter_scale],
        endpoints['2'].shape.as_list())
    self.assertAllEqual(
        [1, input_size / 2**3, input_size / 2**3, 128 * endpoint_filter_scale],
        endpoints['3'].shape.as_list())
    self.assertAllEqual(
        [1, input_size / 2**4, input_size / 2**4, 256 * endpoint_filter_scale],
        endpoints['4'].shape.as_list())
    self.assertAllEqual(
        [1, input_size / 2**5, input_size / 2**5, 512 * endpoint_filter_scale],
        endpoints['5'].shape.as_list())

  @combinations.generate(
      combinations.combine(
          strategy=[
              strategy_combinations.cloud_tpu_strategy,
              strategy_combinations.one_device_strategy_gpu,
          ],
          use_sync_bn=[False, True],
      ))
  def test_sync_bn_multiple_devices(self, strategy, use_sync_bn):
    """Test for sync bn on TPU and GPU devices."""
    inputs = np.random.rand(64, 128, 128, 3)

    tf_keras.backend.set_image_data_format('channels_last')

    with strategy.scope():
      network = resnet.ResNet(model_id=50, use_sync_bn=use_sync_bn)
      _ = network(inputs)

  @parameterized.parameters(
      (128, 34, 1, 'v0', None, 0.0, 1.0, False, False),
      (128, 34, 1, 'v1', 0.25, 0.2, 1.25, True, True),
      (128, 50, 4, 'v0', None, 0.0, 1.5, False, False),
      (128, 50, 4, 'v1', 0.25, 0.2, 2.0, True, True),
  )
  def test_resnet_rs(self, input_size, model_id, endpoint_filter_scale,
                     stem_type, se_ratio, init_stochastic_depth_rate,
                     depth_multiplier, resnetd_shortcut, replace_stem_max_pool):
    """Test creation of ResNet family models."""
    tf_keras.backend.set_image_data_format('channels_last')
    network = resnet.ResNet(
        model_id=model_id,
        depth_multiplier=depth_multiplier,
        stem_type=stem_type,
        resnetd_shortcut=resnetd_shortcut,
        replace_stem_max_pool=replace_stem_max_pool,
        se_ratio=se_ratio,
        init_stochastic_depth_rate=init_stochastic_depth_rate)
    inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
    _ = network(inputs)

  @parameterized.parameters(1, 3, 4)
  def test_input_specs(self, input_dim):
    """Test different input feature dimensions."""
    tf_keras.backend.set_image_data_format('channels_last')

    input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim])
    network = resnet.ResNet(model_id=50, input_specs=input_specs)

    inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1)
    _ = network(inputs)

  def test_serialize_deserialize(self):
    # Create a network object that sets all of its config options.
    kwargs = dict(
        model_id=50,
        depth_multiplier=1.0,
        stem_type='v0',
        se_ratio=None,
        resnetd_shortcut=False,
        replace_stem_max_pool=False,
        init_stochastic_depth_rate=0.0,
        scale_stem=True,
        use_sync_bn=False,
        activation='relu',
        norm_momentum=0.99,
        norm_epsilon=0.001,
        kernel_initializer='VarianceScaling',
        kernel_regularizer=None,
        bias_regularizer=None,
        bn_trainable=True)
    network = resnet.ResNet(**kwargs)

    expected_config = dict(kwargs)
    self.assertEqual(network.get_config(), expected_config)

    # Create another network object from the first object's config.
    new_network = resnet.ResNet.from_config(network.get_config())

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())


if __name__ == '__main__':
  tf.test.main()