File size: 8,797 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of RevNet."""

from typing import Any, Callable, Dict, Optional
# Import libraries
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks


# Specifications for different RevNet variants.
# Each entry specifies block configurations of the particular RevNet variant.
# Each element in the block configuration is in the following format:
# (block_fn, num_filters, block_repeats)
REVNET_SPECS = {
    38: [
        ('residual', 32, 3),
        ('residual', 64, 3),
        ('residual', 112, 3),
    ],
    56: [
        ('bottleneck', 128, 2),
        ('bottleneck', 256, 2),
        ('bottleneck', 512, 3),
        ('bottleneck', 832, 2),
    ],
    104: [
        ('bottleneck', 128, 2),
        ('bottleneck', 256, 2),
        ('bottleneck', 512, 11),
        ('bottleneck', 832, 2),
    ],
}


@tf_keras.utils.register_keras_serializable(package='Vision')
class RevNet(tf_keras.Model):
  """Creates a Reversible ResNet (RevNet) family model.

  This implements:
    Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse.
    The Reversible Residual Network: Backpropagation Without Storing
    Activations.
    (https://arxiv.org/pdf/1707.04585.pdf)
  """

  def __init__(
      self,
      model_id: int,
      input_specs: tf_keras.layers.InputSpec = tf_keras.layers.InputSpec(
          shape=[None, None, None, 3]),
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      **kwargs):
    """Initializes a RevNet model.

    Args:
      model_id: An `int` of depth/id of ResNet backbone model.
      input_specs: A `tf_keras.layers.InputSpec` of the input tensor.
      activation: A `str` name of the activation function.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A str for kernel initializer of convolutional layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      **kwargs: Additional keyword arguments to be passed.
    """
    self._model_id = model_id
    self._input_specs = input_specs
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._norm = tf_keras.layers.BatchNormalization

    axis = -1 if tf_keras.backend.image_data_format() == 'channels_last' else 1

    # Build RevNet.
    inputs = tf_keras.Input(shape=input_specs.shape[1:])

    x = tf_keras.layers.Conv2D(
        filters=REVNET_SPECS[model_id][0][1],
        kernel_size=7, strides=2, use_bias=False, padding='same',
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer)(inputs)
    x = self._norm(
        axis=axis,
        momentum=norm_momentum,
        epsilon=norm_epsilon,
        synchronized=use_sync_bn)(x)
    x = tf_utils.get_activation(activation)(x)
    x = tf_keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)

    endpoints = {}
    for i, spec in enumerate(REVNET_SPECS[model_id]):
      if spec[0] == 'residual':
        inner_block_fn = nn_blocks.ResidualInner
      elif spec[0] == 'bottleneck':
        inner_block_fn = nn_blocks.BottleneckResidualInner
      else:
        raise ValueError('Block fn `{}` is not supported.'.format(spec[0]))

      if spec[1] % 2 != 0:
        raise ValueError('Number of output filters must be even to ensure '
                         'splitting in channel dimension for reversible blocks')

      x = self._block_group(
          inputs=x,
          filters=spec[1],
          strides=(1 if i == 0 else 2),
          inner_block_fn=inner_block_fn,
          block_repeats=spec[2],
          batch_norm_first=(i != 0),  # Only skip on first block
          name='revblock_group_{}'.format(i + 2))
      endpoints[str(i + 2)] = x

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}

    super(RevNet, self).__init__(inputs=inputs, outputs=endpoints, **kwargs)

  def _block_group(self,
                   inputs: tf.Tensor,
                   filters: int,
                   strides: int,
                   inner_block_fn: Callable[..., tf_keras.layers.Layer],
                   block_repeats: int,
                   batch_norm_first: bool,
                   name: str = 'revblock_group') -> tf.Tensor:
    """Creates one reversible block for RevNet model.

    Args:
      inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
      filters: An `int` number of filters for the first convolution of the
        layer.
      strides: An `int` stride to use for the first convolution of the layer. If
        greater than 1, this block group will downsample the input.
      inner_block_fn: Either `nn_blocks.ResidualInner` or
        `nn_blocks.BottleneckResidualInner`.
      block_repeats: An `int` number of blocks contained in this block group.
      batch_norm_first: A `bool` that specifies whether to apply
        BatchNormalization and activation layer before feeding into convolution
        layers.
      name: A `str` name for the block.

    Returns:
      The output `tf.Tensor` of the block layer.
    """
    x = inputs
    for i in range(block_repeats):
      is_first_block = i == 0
      # Only first residual layer in block gets downsampled
      curr_strides = strides if is_first_block else 1
      f = inner_block_fn(
          filters=filters // 2,
          strides=curr_strides,
          batch_norm_first=batch_norm_first and is_first_block,
          kernel_regularizer=self._kernel_regularizer)
      g = inner_block_fn(
          filters=filters // 2,
          strides=1,
          batch_norm_first=batch_norm_first and is_first_block,
          kernel_regularizer=self._kernel_regularizer)
      x = nn_blocks.ReversibleLayer(f, g)(x)

    return tf.identity(x, name=name)

  def get_config(self) -> Dict[str, Any]:
    config_dict = {
        'model_id': self._model_id,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
    }
    return config_dict

  @classmethod
  def from_config(cls,
                  config: Dict[str, Any],
                  custom_objects: Optional[Any] = None) -> tf_keras.Model:
    return cls(**config)

  @property
  def output_specs(self) -> Dict[int, tf.TensorShape]:
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs  # pytype: disable=bad-return-type  # trace-all-classes


@factory.register_backbone_builder('revnet')
def build_revnet(
    input_specs: tf_keras.layers.InputSpec,
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
    l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model:  # pytype: disable=annotation-type-mismatch  # typed-keras
  """Builds RevNet backbone from a config."""
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
  assert backbone_type == 'revnet', (f'Inconsistent backbone type '
                                     f'{backbone_type}')

  return RevNet(
      model_id=backbone_cfg.model_id,
      input_specs=input_specs,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)