Spaces:
Runtime error
Runtime error
File size: 3,225 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for RevNet."""
# Import libraries
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.vision.modeling.backbones import revnet
class RevNetTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(128, 56, 4),
(128, 104, 4),
)
def test_network_creation(self, input_size, model_id,
endpoint_filter_scale):
"""Test creation of RevNet family models."""
tf_keras.backend.set_image_data_format('channels_last')
network = revnet.RevNet(model_id=model_id)
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
network.summary()
self.assertAllEqual(
[1, input_size / 2**2, input_size / 2**2, 128 * endpoint_filter_scale],
endpoints['2'].shape.as_list())
self.assertAllEqual(
[1, input_size / 2**3, input_size / 2**3, 256 * endpoint_filter_scale],
endpoints['3'].shape.as_list())
self.assertAllEqual(
[1, input_size / 2**4, input_size / 2**4, 512 * endpoint_filter_scale],
endpoints['4'].shape.as_list())
self.assertAllEqual(
[1, input_size / 2**5, input_size / 2**5, 832 * endpoint_filter_scale],
endpoints['5'].shape.as_list())
@parameterized.parameters(1, 3, 4)
def test_input_specs(self, input_dim):
"""Test different input feature dimensions."""
tf_keras.backend.set_image_data_format('channels_last')
input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim])
network = revnet.RevNet(model_id=56, input_specs=input_specs)
inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1)
_ = network(inputs)
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
kwargs = dict(
model_id=56,
activation='relu',
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
kernel_initializer='VarianceScaling',
kernel_regularizer=None,
)
network = revnet.RevNet(**kwargs)
expected_config = dict(kwargs)
self.assertEqual(network.get_config(), expected_config)
# Create another network object from the first object's config.
new_network = revnet.RevNet.from_config(network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
if __name__ == '__main__':
tf.test.main()
|