File size: 21,154 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of SpineNet Networks."""

import math
from typing import Any, List, Optional, Tuple

# Import libraries

from absl import logging
import tensorflow as tf, tf_keras

from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers
from official.vision.ops import spatial_transform_ops

layers = tf_keras.layers

FILTER_SIZE_MAP = {
    1: 32,
    2: 64,
    3: 128,
    4: 256,
    5: 256,
    6: 256,
    7: 256,
}

# The fixed SpineNet architecture discovered by NAS.
# Each element represents a specification of a building block:
#   (block_level, block_fn, (input_offset0, input_offset1), is_output).
SPINENET_BLOCK_SPECS = [
    (2, 'bottleneck', (0, 1), False),
    (4, 'residual', (0, 1), False),
    (3, 'bottleneck', (2, 3), False),
    (4, 'bottleneck', (2, 4), False),
    (6, 'residual', (3, 5), False),
    (4, 'bottleneck', (3, 5), False),
    (5, 'residual', (6, 7), False),
    (7, 'residual', (6, 8), False),
    (5, 'bottleneck', (8, 9), False),
    (5, 'bottleneck', (8, 10), False),
    (4, 'bottleneck', (5, 10), True),
    (3, 'bottleneck', (4, 10), True),
    (5, 'bottleneck', (7, 12), True),
    (7, 'bottleneck', (5, 14), True),
    (6, 'bottleneck', (12, 14), True),
    (2, 'bottleneck', (2, 13), True),
]

SCALING_MAP = {
    '49S': {
        'endpoints_num_filters': 128,
        'filter_size_scale': 0.65,
        'resample_alpha': 0.5,
        'block_repeats': 1,
    },
    '49': {
        'endpoints_num_filters': 256,
        'filter_size_scale': 1.0,
        'resample_alpha': 0.5,
        'block_repeats': 1,
    },
    '96': {
        'endpoints_num_filters': 256,
        'filter_size_scale': 1.0,
        'resample_alpha': 0.5,
        'block_repeats': 2,
    },
    '143': {
        'endpoints_num_filters': 256,
        'filter_size_scale': 1.0,
        'resample_alpha': 1.0,
        'block_repeats': 3,
    },
    # SpineNet-143 with 1.3x filter_size_scale.
    '143L': {
        'endpoints_num_filters': 256,
        'filter_size_scale': 1.3,
        'resample_alpha': 1.0,
        'block_repeats': 3,
    },
    '190': {
        'endpoints_num_filters': 512,
        'filter_size_scale': 1.3,
        'resample_alpha': 1.0,
        'block_repeats': 4,
    },
}


class BlockSpec(object):
  """A container class that specifies the block configuration for SpineNet."""

  def __init__(self, level: int, block_fn: str, input_offsets: Tuple[int, int],
               is_output: bool):
    self.level = level
    self.block_fn = block_fn
    self.input_offsets = input_offsets
    self.is_output = is_output


def build_block_specs(
    block_specs: Optional[List[Tuple[Any, ...]]] = None) -> List[BlockSpec]:
  """Builds the list of BlockSpec objects for SpineNet."""
  if not block_specs:
    block_specs = SPINENET_BLOCK_SPECS
  logging.info('Building SpineNet block specs: %s', block_specs)
  return [BlockSpec(*b) for b in block_specs]


@tf_keras.utils.register_keras_serializable(package='Vision')
class SpineNet(tf_keras.Model):
  """Creates a SpineNet family model.

  This implements:
    Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing Tan,
    Yin Cui, Quoc V. Le, Xiaodan Song.
    SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization.
    (https://arxiv.org/abs/1912.05027)
  """

  def __init__(
      self,
      input_specs: tf_keras.layers.InputSpec = tf_keras.layers.InputSpec(
          shape=[None, None, None, 3]),
      min_level: int = 3,
      max_level: int = 7,
      block_specs: Optional[List[BlockSpec]] = None,
      endpoints_num_filters: int = 256,
      resample_alpha: float = 0.5,
      block_repeats: int = 1,
      filter_size_scale: float = 1.0,
      init_stochastic_depth_rate: float = 0.0,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      **kwargs):
    """Initializes a SpineNet model.

    Args:
      input_specs: A `tf_keras.layers.InputSpec` of the input tensor.
      min_level: An `int` of min level for output mutiscale features.
      max_level: An `int` of max level for output mutiscale features.
      block_specs: A list of block specifications for the SpineNet model
        discovered by NAS.
      endpoints_num_filters: An `int` of feature dimension for the output
        endpoints.
      resample_alpha: A `float` of resampling factor in cross-scale connections.
      block_repeats: An `int` of number of blocks contained in the layer.
      filter_size_scale: A `float` of multiplier for the filters (number of
        channels) for all convolution ops. The value must be greater than zero.
        Typical usage will be to set this value in (0, 1) to reduce the number
        of parameters or computation cost of the model.
      init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
      kernel_initializer: A str for kernel initializer of convolutional layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      activation: A `str` name of the activation function.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A small `float` added to variance to avoid dividing by zero.
      **kwargs: Additional keyword arguments to be passed.
    """
    self._input_specs = input_specs
    self._min_level = min_level
    self._max_level = max_level
    self._block_specs = (
        build_block_specs() if block_specs is None else block_specs
    )
    self._endpoints_num_filters = endpoints_num_filters
    self._resample_alpha = resample_alpha
    self._block_repeats = block_repeats
    self._filter_size_scale = filter_size_scale
    self._init_stochastic_depth_rate = init_stochastic_depth_rate
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._activation = activation
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._init_block_fn = 'bottleneck'
    self._num_init_blocks = 2

    self._set_activation_fn(activation)
    self._norm = layers.BatchNormalization

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1

    # Build SpineNet.
    inputs = tf_keras.Input(shape=input_specs.shape[1:])

    net = self._build_stem(inputs=inputs)
    input_width = input_specs.shape[2]
    if input_width is None:
      max_stride = max(map(lambda b: b.level, self._block_specs))
      input_width = 2 ** max_stride
    net = self._build_scale_permuted_network(net=net, input_width=input_width)
    endpoints = self._build_endpoints(net=net)

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
    super(SpineNet, self).__init__(inputs=inputs, outputs=endpoints)

  def _set_activation_fn(self, activation):
    if activation == 'relu':
      self._activation_fn = tf.nn.relu
    elif activation == 'swish':
      self._activation_fn = tf.nn.swish
    else:
      raise ValueError('Activation {} not implemented.'.format(activation))

  def _block_group(self,
                   inputs: tf.Tensor,
                   filters: int,
                   strides: int,
                   block_fn_cand: str,
                   block_repeats: int = 1,
                   stochastic_depth_drop_rate: Optional[float] = None,
                   name: str = 'block_group'):
    """Creates one group of blocks for the SpineNet model."""
    block_fn_candidates = {
        'bottleneck': nn_blocks.BottleneckBlock,
        'residual': nn_blocks.ResidualBlock,
    }
    block_fn = block_fn_candidates[block_fn_cand]
    _, _, _, num_filters = inputs.get_shape().as_list()

    if block_fn_cand == 'bottleneck':
      use_projection = not (num_filters == (filters * 4) and strides == 1)
    else:
      use_projection = not (num_filters == filters and strides == 1)

    x = block_fn(
        filters=filters,
        strides=strides,
        use_projection=use_projection,
        stochastic_depth_drop_rate=stochastic_depth_drop_rate,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=self._activation,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon)(
            inputs)
    for _ in range(1, block_repeats):
      x = block_fn(
          filters=filters,
          strides=1,
          use_projection=False,
          stochastic_depth_drop_rate=stochastic_depth_drop_rate,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._activation,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon)(
              x)
    return tf.identity(x, name=name)

  def _build_stem(self, inputs):
    """Builds SpineNet stem."""
    x = layers.Conv2D(
        filters=64,
        kernel_size=7,
        strides=2,
        use_bias=False,
        padding='same',
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            inputs)
    x = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn)(
            x)
    x = tf_utils.get_activation(self._activation_fn)(x)
    x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)

    net = []
    # Build the initial level 2 blocks.
    for i in range(self._num_init_blocks):
      x = self._block_group(
          inputs=x,
          filters=int(FILTER_SIZE_MAP[2] * self._filter_size_scale),
          strides=1,
          block_fn_cand=self._init_block_fn,
          block_repeats=self._block_repeats,
          name='stem_block_{}'.format(i + 1))
      net.append(x)
    return net

  def _build_scale_permuted_network(self,
                                    net,
                                    input_width,
                                    weighted_fusion=False):
    """Builds scale-permuted network."""
    net_sizes = [int(math.ceil(input_width / 2**2))] * len(net)
    net_block_fns = [self._init_block_fn] * len(net)
    num_outgoing_connections = [0] * len(net)

    endpoints = {}
    for i, block_spec in enumerate(self._block_specs):
      # Find out specs for the target block.
      target_width = int(math.ceil(input_width / 2**block_spec.level))
      target_num_filters = int(FILTER_SIZE_MAP[block_spec.level] *
                               self._filter_size_scale)
      target_block_fn = block_spec.block_fn

      # Resample then merge input0 and input1.
      parents = []
      input0 = block_spec.input_offsets[0]
      input1 = block_spec.input_offsets[1]

      x0 = self._resample_with_alpha(
          inputs=net[input0],
          input_width=net_sizes[input0],
          input_block_fn=net_block_fns[input0],
          target_width=target_width,
          target_num_filters=target_num_filters,
          target_block_fn=target_block_fn,
          alpha=self._resample_alpha)
      parents.append(x0)
      num_outgoing_connections[input0] += 1

      x1 = self._resample_with_alpha(
          inputs=net[input1],
          input_width=net_sizes[input1],
          input_block_fn=net_block_fns[input1],
          target_width=target_width,
          target_num_filters=target_num_filters,
          target_block_fn=target_block_fn,
          alpha=self._resample_alpha)
      parents.append(x1)
      num_outgoing_connections[input1] += 1

      # Merge 0 outdegree blocks to the output block.
      if block_spec.is_output:
        for j, (j_feat,
                j_connections) in enumerate(zip(net, num_outgoing_connections)):
          if j_connections == 0 and (j_feat.shape[2] == target_width and
                                     j_feat.shape[3] == x0.shape[3]):
            parents.append(j_feat)
            num_outgoing_connections[j] += 1

      # pylint: disable=g-direct-tensorflow-import
      if weighted_fusion:
        dtype = parents[0].dtype
        parent_weights = [
            tf.nn.relu(tf.cast(tf.Variable(1.0, name='block{}_fusion{}'.format(
                i, j)), dtype=dtype)) for j in range(len(parents))]
        weights_sum = tf.add_n(parent_weights)
        parents = [
            parents[i] * parent_weights[i] / (weights_sum + 0.0001)
            for i in range(len(parents))
        ]

      # Fuse all parent nodes then build a new block.
      x = tf_utils.get_activation(self._activation_fn)(tf.add_n(parents))
      x = self._block_group(
          inputs=x,
          filters=target_num_filters,
          strides=1,
          block_fn_cand=target_block_fn,
          block_repeats=self._block_repeats,
          stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
              self._init_stochastic_depth_rate, i + 1, len(self._block_specs)),
          name='scale_permuted_block_{}'.format(i + 1))

      net.append(x)
      net_sizes.append(target_width)
      net_block_fns.append(target_block_fn)
      num_outgoing_connections.append(0)

      # Save output feats.
      if block_spec.is_output:
        if block_spec.level in endpoints:
          raise ValueError('Duplicate feats found for output level {}.'.format(
              block_spec.level))
        if (block_spec.level < self._min_level or
            block_spec.level > self._max_level):
          logging.warning(
              'SpineNet output level %s out of range [min_level, max_level] = '
              '[%s, %s] will not be used for further processing.',
              block_spec.level, self._min_level, self._max_level)
        endpoints[str(block_spec.level)] = x

    return endpoints

  def _build_endpoints(self, net):
    """Matches filter size for endpoints before sharing conv layers."""
    endpoints = {}
    for level in range(self._min_level, self._max_level + 1):
      x = layers.Conv2D(
          filters=self._endpoints_num_filters,
          kernel_size=1,
          strides=1,
          use_bias=False,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              net[str(level)])
      x = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          synchronized=self._use_sync_bn)(
              x)
      x = tf_utils.get_activation(self._activation_fn)(x)
      endpoints[str(level)] = x
    return endpoints

  def _resample_with_alpha(self,
                           inputs,
                           input_width,
                           input_block_fn,
                           target_width,
                           target_num_filters,
                           target_block_fn,
                           alpha=0.5):
    """Matches resolution and feature dimension."""
    _, _, _, input_num_filters = inputs.get_shape().as_list()
    if input_block_fn == 'bottleneck':
      input_num_filters /= 4
    new_num_filters = int(input_num_filters * alpha)

    x = layers.Conv2D(
        filters=new_num_filters,
        kernel_size=1,
        strides=1,
        use_bias=False,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            inputs)
    x = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn)(
            x)
    x = tf_utils.get_activation(self._activation_fn)(x)

    # Spatial resampling.
    if input_width > target_width:
      x = layers.Conv2D(
          filters=new_num_filters,
          kernel_size=3,
          strides=2,
          padding='SAME',
          use_bias=False,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          synchronized=self._use_sync_bn)(
              x)
      x = tf_utils.get_activation(self._activation_fn)(x)
      input_width /= 2
      while input_width > target_width:
        x = layers.MaxPool2D(pool_size=3, strides=2, padding='SAME')(x)
        input_width /= 2
    elif input_width < target_width:
      scale = target_width // input_width
      x = spatial_transform_ops.nearest_upsampling(x, scale=scale)

    # Last 1x1 conv to match filter size.
    if target_block_fn == 'bottleneck':
      target_num_filters *= 4
    x = layers.Conv2D(
        filters=target_num_filters,
        kernel_size=1,
        strides=1,
        use_bias=False,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            x)
    x = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn)(
            x)
    return x

  def get_config(self):
    config_dict = {
        'min_level': self._min_level,
        'max_level': self._max_level,
        'endpoints_num_filters': self._endpoints_num_filters,
        'resample_alpha': self._resample_alpha,
        'block_repeats': self._block_repeats,
        'filter_size_scale': self._filter_size_scale,
        'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs


@factory.register_backbone_builder('spinenet')
def build_spinenet(
    input_specs: tf_keras.layers.InputSpec,
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
    l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model:
  """Builds SpineNet backbone from a config."""
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
  assert backbone_type == 'spinenet', (f'Inconsistent backbone type '
                                       f'{backbone_type}')

  model_id = str(backbone_cfg.model_id)
  if model_id not in SCALING_MAP:
    raise ValueError(
        'SpineNet-{} is not a valid architecture.'.format(model_id))
  scaling_params = SCALING_MAP[model_id]

  return SpineNet(
      input_specs=input_specs,
      min_level=backbone_cfg.min_level,
      max_level=backbone_cfg.max_level,
      endpoints_num_filters=scaling_params['endpoints_num_filters'],
      resample_alpha=scaling_params['resample_alpha'],
      block_repeats=scaling_params['block_repeats'],
      filter_size_scale=scaling_params['filter_size_scale'],
      init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
      kernel_regularizer=l2_regularizer,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon)