File size: 14,440 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of NAS-FPN."""

from typing import Any, List, Mapping, Optional, Tuple

# Import libraries

from absl import logging
import tensorflow as tf, tf_keras

from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.decoders import factory
from official.vision.ops import spatial_transform_ops


# The fixed NAS-FPN architecture discovered by NAS.
# Each element represents a specification of a building block:
#   (block_level, combine_fn, (input_offset0, input_offset1), is_output).
NASFPN_BLOCK_SPECS = [
    (4, 'attention', (1, 3), False),
    (4, 'sum', (1, 5), False),
    (3, 'sum', (0, 6), True),
    (4, 'sum', (6, 7), True),
    (5, 'attention', (7, 8), True),
    (7, 'attention', (6, 9), True),
    (6, 'attention', (9, 10), True),
]


class BlockSpec():
  """A container class that specifies the block configuration for NAS-FPN."""

  def __init__(self, level: int, combine_fn: str,
               input_offsets: Tuple[int, int], is_output: bool):
    self.level = level
    self.combine_fn = combine_fn
    self.input_offsets = input_offsets
    self.is_output = is_output


def build_block_specs(
    block_specs: Optional[List[Tuple[Any, ...]]] = None) -> List[BlockSpec]:
  """Builds the list of BlockSpec objects for NAS-FPN."""
  if not block_specs:
    block_specs = NASFPN_BLOCK_SPECS
  logging.info('Building NAS-FPN block specs: %s', block_specs)
  return [BlockSpec(*b) for b in block_specs]


@tf_keras.utils.register_keras_serializable(package='Vision')
class NASFPN(tf_keras.Model):
  """Creates a NAS-FPN model.

  This implements the paper:
  Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, Quoc V. Le.
  NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection.
  (https://arxiv.org/abs/1904.07392)
  """

  def __init__(
      self,
      input_specs: Mapping[str, tf.TensorShape],
      min_level: int = 3,
      max_level: int = 7,
      block_specs: Optional[List[BlockSpec]] = None,
      num_filters: int = 256,
      num_repeats: int = 5,
      use_separable_conv: bool = False,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      **kwargs):
    """Initializes a NAS-FPN model.

    Args:
      input_specs: A `dict` of input specifications. A dictionary consists of
        {level: TensorShape} from a backbone.
      min_level: An `int` of minimum level in FPN output feature maps.
      max_level: An `int` of maximum level in FPN output feature maps.
      block_specs: a list of BlockSpec objects that specifies the NAS-FPN
        network topology. By default, the previously discovered architecture is
        used.
      num_filters: An `int` number of filters in FPN layers.
      num_repeats: number of repeats for feature pyramid network.
      use_separable_conv: A `bool`.  If True use separable convolution for
        convolution in FPN layers.
      activation: A `str` name of the activation function.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A `str` name of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default is None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
      **kwargs: Additional keyword arguments to be passed.
    """
    self._config_dict = {
        'input_specs': input_specs,
        'min_level': min_level,
        'max_level': max_level,
        'num_filters': num_filters,
        'num_repeats': num_repeats,
        'use_separable_conv': use_separable_conv,
        'activation': activation,
        'use_sync_bn': use_sync_bn,
        'norm_momentum': norm_momentum,
        'norm_epsilon': norm_epsilon,
        'kernel_initializer': kernel_initializer,
        'kernel_regularizer': kernel_regularizer,
        'bias_regularizer': bias_regularizer,
    }
    self._min_level = min_level
    self._max_level = max_level
    self._block_specs = (
        build_block_specs() if block_specs is None else block_specs
    )
    self._num_repeats = num_repeats
    self._conv_op = (tf_keras.layers.SeparableConv2D
                     if self._config_dict['use_separable_conv']
                     else tf_keras.layers.Conv2D)
    self._norm_op = tf_keras.layers.BatchNormalization
    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._norm_kwargs = {
        'axis': self._bn_axis,
        'momentum': self._config_dict['norm_momentum'],
        'epsilon': self._config_dict['norm_epsilon'],
        'synchronized': self._config_dict['use_sync_bn'],
    }
    self._activation = tf_utils.get_activation(activation)

    # Gets input feature pyramid from backbone.
    inputs = self._build_input_pyramid(input_specs, min_level)

    # Projects the input features.
    feats = []
    for level in range(self._min_level, self._max_level + 1):
      if str(level) in inputs.keys():
        feats.append(self._resample_feature_map(
            inputs[str(level)], level, level, self._config_dict['num_filters']))
      else:
        feats.append(self._resample_feature_map(
            feats[-1], level - 1, level, self._config_dict['num_filters']))

    # Repeatly builds the NAS-FPN modules.
    for _ in range(self._num_repeats):
      output_feats = self._build_feature_pyramid(feats)
      feats = [output_feats[level]
               for level in range(self._min_level, self._max_level + 1)]

    self._output_specs = {
        str(level): output_feats[level].get_shape()
        for level in range(min_level, max_level + 1)
    }
    output_feats = {str(level): output_feats[level]
                    for level in output_feats.keys()}
    super(NASFPN, self).__init__(inputs=inputs, outputs=output_feats, **kwargs)

  def _build_input_pyramid(self, input_specs: Mapping[str, tf.TensorShape],
                           min_level: int):
    assert isinstance(input_specs, dict)
    if min(input_specs.keys()) > str(min_level):
      raise ValueError(
          'Backbone min level should be less or equal to FPN min level')

    inputs = {}
    for level, spec in input_specs.items():
      inputs[level] = tf_keras.Input(shape=spec[1:])
    return inputs

  def _resample_feature_map(self,
                            inputs,
                            input_level,
                            target_level,
                            target_num_filters=256):
    x = inputs
    _, _, _, input_num_filters = x.get_shape().as_list()
    if input_num_filters != target_num_filters:
      x = self._conv_op(
          filters=target_num_filters,
          kernel_size=1,
          padding='same',
          **self._conv_kwargs)(x)
      x = self._norm_op(**self._norm_kwargs)(x)

    if input_level < target_level:
      stride = int(2 ** (target_level - input_level))
      return tf_keras.layers.MaxPool2D(
          pool_size=stride, strides=stride, padding='same')(x)
    if input_level > target_level:
      scale = int(2 ** (input_level - target_level))
      return spatial_transform_ops.nearest_upsampling(x, scale=scale)

    # Force output x to be the same dtype as mixed precision policy. This avoids
    # dtype mismatch when one input (by default float32 dtype) does not meet all
    # the above conditions and is output unchanged, while other inputs are
    # processed to have different dtype, e.g., using bfloat16 on TPU.
    compute_dtype = tf_keras.layers.Layer().dtype_policy.compute_dtype
    if (compute_dtype is not None) and (x.dtype != compute_dtype):
      return tf.cast(x, dtype=compute_dtype)
    else:
      return x

  @property
  def _conv_kwargs(self):
    if self._config_dict['use_separable_conv']:
      return {
          'depthwise_initializer': tf_keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          'pointwise_initializer': tf_keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          'bias_initializer': tf.zeros_initializer(),
          'depthwise_regularizer': self._config_dict['kernel_regularizer'],
          'pointwise_regularizer': self._config_dict['kernel_regularizer'],
          'bias_regularizer': self._config_dict['bias_regularizer'],
      }
    else:
      return {
          'kernel_initializer': tf_keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          'bias_initializer': tf.zeros_initializer(),
          'kernel_regularizer': self._config_dict['kernel_regularizer'],
          'bias_regularizer': self._config_dict['bias_regularizer'],
      }

  def _global_attention(self, feat0, feat1):
    m = tf.math.reduce_max(feat0, axis=[1, 2], keepdims=True)
    m = tf.math.sigmoid(m)
    return feat0 + feat1 * m

  def _build_feature_pyramid(self, feats):
    num_output_connections = [0] * len(feats)
    num_output_levels = self._max_level - self._min_level + 1
    feat_levels = list(range(self._min_level, self._max_level + 1))

    for i, block_spec in enumerate(self._block_specs):
      new_level = block_spec.level

      # Checks the range of input_offsets.
      for input_offset in block_spec.input_offsets:
        if input_offset >= len(feats):
          raise ValueError(
              'input_offset ({}) is larger than num feats({})'.format(
                  input_offset, len(feats)))
      input0 = block_spec.input_offsets[0]
      input1 = block_spec.input_offsets[1]

      # Update graph with inputs.
      node0 = feats[input0]
      node0_level = feat_levels[input0]
      num_output_connections[input0] += 1
      node0 = self._resample_feature_map(node0, node0_level, new_level)
      node1 = feats[input1]
      node1_level = feat_levels[input1]
      num_output_connections[input1] += 1
      node1 = self._resample_feature_map(node1, node1_level, new_level)

      # Combine node0 and node1 to create new feat.
      if block_spec.combine_fn == 'sum':
        new_node = node0 + node1
      elif block_spec.combine_fn == 'attention':
        if node0_level >= node1_level:
          new_node = self._global_attention(node0, node1)
        else:
          new_node = self._global_attention(node1, node0)
      else:
        raise ValueError('unknown combine_fn `{}`.'
                         .format(block_spec.combine_fn))

      # Add intermediate nodes that do not have any connections to output.
      if block_spec.is_output:
        for j, (feat, feat_level, num_output) in enumerate(
            zip(feats, feat_levels, num_output_connections)):
          if num_output == 0 and feat_level == new_level:
            num_output_connections[j] += 1

            feat_ = self._resample_feature_map(feat, feat_level, new_level)
            new_node += feat_

      new_node = self._activation(new_node)
      new_node = self._conv_op(
          filters=self._config_dict['num_filters'],
          kernel_size=(3, 3),
          padding='same',
          **self._conv_kwargs)(new_node)
      new_node = self._norm_op(**self._norm_kwargs)(new_node)

      feats.append(new_node)
      feat_levels.append(new_level)
      num_output_connections.append(0)

    output_feats = {}
    for i in range(len(feats) - num_output_levels, len(feats)):
      level = feat_levels[i]
      output_feats[level] = feats[i]
    logging.info('Output feature pyramid: %s', output_feats)
    return output_feats

  def get_config(self) -> Mapping[str, Any]:
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self) -> Mapping[str, tf.TensorShape]:
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs


@factory.register_decoder_builder('nasfpn')
def build_nasfpn_decoder(
    input_specs: Mapping[str, tf.TensorShape],
    model_config: hyperparams.Config,
    l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
  """Builds NASFPN decoder from a config.

  Args:
    input_specs: A `dict` of input specifications. A dictionary consists of
      {level: TensorShape} from a backbone.
    model_config: A OneOfConfig. Model config.
    l2_regularizer: A `tf_keras.regularizers.Regularizer` instance. Default to
      None.

  Returns:
    A `tf_keras.Model` instance of the NASFPN decoder.

  Raises:
    ValueError: If the model_config.decoder.type is not `nasfpn`.
  """
  decoder_type = model_config.decoder.type
  decoder_cfg = model_config.decoder.get()
  if decoder_type != 'nasfpn':
    raise ValueError(f'Inconsistent decoder type {decoder_type}. '
                     'Need to be `nasfpn`.')

  norm_activation_config = model_config.norm_activation
  return NASFPN(
      input_specs=input_specs,
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_filters=decoder_cfg.num_filters,
      num_repeats=decoder_cfg.num_repeats,
      use_separable_conv=decoder_cfg.use_separable_conv,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)