Spaces:
Runtime error
Runtime error
File size: 14,440 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of NAS-FPN."""
from typing import Any, List, Mapping, Optional, Tuple
# Import libraries
from absl import logging
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.decoders import factory
from official.vision.ops import spatial_transform_ops
# The fixed NAS-FPN architecture discovered by NAS.
# Each element represents a specification of a building block:
# (block_level, combine_fn, (input_offset0, input_offset1), is_output).
NASFPN_BLOCK_SPECS = [
(4, 'attention', (1, 3), False),
(4, 'sum', (1, 5), False),
(3, 'sum', (0, 6), True),
(4, 'sum', (6, 7), True),
(5, 'attention', (7, 8), True),
(7, 'attention', (6, 9), True),
(6, 'attention', (9, 10), True),
]
class BlockSpec():
"""A container class that specifies the block configuration for NAS-FPN."""
def __init__(self, level: int, combine_fn: str,
input_offsets: Tuple[int, int], is_output: bool):
self.level = level
self.combine_fn = combine_fn
self.input_offsets = input_offsets
self.is_output = is_output
def build_block_specs(
block_specs: Optional[List[Tuple[Any, ...]]] = None) -> List[BlockSpec]:
"""Builds the list of BlockSpec objects for NAS-FPN."""
if not block_specs:
block_specs = NASFPN_BLOCK_SPECS
logging.info('Building NAS-FPN block specs: %s', block_specs)
return [BlockSpec(*b) for b in block_specs]
@tf_keras.utils.register_keras_serializable(package='Vision')
class NASFPN(tf_keras.Model):
"""Creates a NAS-FPN model.
This implements the paper:
Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, Quoc V. Le.
NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection.
(https://arxiv.org/abs/1904.07392)
"""
def __init__(
self,
input_specs: Mapping[str, tf.TensorShape],
min_level: int = 3,
max_level: int = 7,
block_specs: Optional[List[BlockSpec]] = None,
num_filters: int = 256,
num_repeats: int = 5,
use_separable_conv: bool = False,
activation: str = 'relu',
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
**kwargs):
"""Initializes a NAS-FPN model.
Args:
input_specs: A `dict` of input specifications. A dictionary consists of
{level: TensorShape} from a backbone.
min_level: An `int` of minimum level in FPN output feature maps.
max_level: An `int` of maximum level in FPN output feature maps.
block_specs: a list of BlockSpec objects that specifies the NAS-FPN
network topology. By default, the previously discovered architecture is
used.
num_filters: An `int` number of filters in FPN layers.
num_repeats: number of repeats for feature pyramid network.
use_separable_conv: A `bool`. If True use separable convolution for
convolution in FPN layers.
activation: A `str` name of the activation function.
use_sync_bn: A `bool`. If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_initializer: A `str` name of kernel_initializer for convolutional
layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
**kwargs: Additional keyword arguments to be passed.
"""
self._config_dict = {
'input_specs': input_specs,
'min_level': min_level,
'max_level': max_level,
'num_filters': num_filters,
'num_repeats': num_repeats,
'use_separable_conv': use_separable_conv,
'activation': activation,
'use_sync_bn': use_sync_bn,
'norm_momentum': norm_momentum,
'norm_epsilon': norm_epsilon,
'kernel_initializer': kernel_initializer,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer,
}
self._min_level = min_level
self._max_level = max_level
self._block_specs = (
build_block_specs() if block_specs is None else block_specs
)
self._num_repeats = num_repeats
self._conv_op = (tf_keras.layers.SeparableConv2D
if self._config_dict['use_separable_conv']
else tf_keras.layers.Conv2D)
self._norm_op = tf_keras.layers.BatchNormalization
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
self._norm_kwargs = {
'axis': self._bn_axis,
'momentum': self._config_dict['norm_momentum'],
'epsilon': self._config_dict['norm_epsilon'],
'synchronized': self._config_dict['use_sync_bn'],
}
self._activation = tf_utils.get_activation(activation)
# Gets input feature pyramid from backbone.
inputs = self._build_input_pyramid(input_specs, min_level)
# Projects the input features.
feats = []
for level in range(self._min_level, self._max_level + 1):
if str(level) in inputs.keys():
feats.append(self._resample_feature_map(
inputs[str(level)], level, level, self._config_dict['num_filters']))
else:
feats.append(self._resample_feature_map(
feats[-1], level - 1, level, self._config_dict['num_filters']))
# Repeatly builds the NAS-FPN modules.
for _ in range(self._num_repeats):
output_feats = self._build_feature_pyramid(feats)
feats = [output_feats[level]
for level in range(self._min_level, self._max_level + 1)]
self._output_specs = {
str(level): output_feats[level].get_shape()
for level in range(min_level, max_level + 1)
}
output_feats = {str(level): output_feats[level]
for level in output_feats.keys()}
super(NASFPN, self).__init__(inputs=inputs, outputs=output_feats, **kwargs)
def _build_input_pyramid(self, input_specs: Mapping[str, tf.TensorShape],
min_level: int):
assert isinstance(input_specs, dict)
if min(input_specs.keys()) > str(min_level):
raise ValueError(
'Backbone min level should be less or equal to FPN min level')
inputs = {}
for level, spec in input_specs.items():
inputs[level] = tf_keras.Input(shape=spec[1:])
return inputs
def _resample_feature_map(self,
inputs,
input_level,
target_level,
target_num_filters=256):
x = inputs
_, _, _, input_num_filters = x.get_shape().as_list()
if input_num_filters != target_num_filters:
x = self._conv_op(
filters=target_num_filters,
kernel_size=1,
padding='same',
**self._conv_kwargs)(x)
x = self._norm_op(**self._norm_kwargs)(x)
if input_level < target_level:
stride = int(2 ** (target_level - input_level))
return tf_keras.layers.MaxPool2D(
pool_size=stride, strides=stride, padding='same')(x)
if input_level > target_level:
scale = int(2 ** (input_level - target_level))
return spatial_transform_ops.nearest_upsampling(x, scale=scale)
# Force output x to be the same dtype as mixed precision policy. This avoids
# dtype mismatch when one input (by default float32 dtype) does not meet all
# the above conditions and is output unchanged, while other inputs are
# processed to have different dtype, e.g., using bfloat16 on TPU.
compute_dtype = tf_keras.layers.Layer().dtype_policy.compute_dtype
if (compute_dtype is not None) and (x.dtype != compute_dtype):
return tf.cast(x, dtype=compute_dtype)
else:
return x
@property
def _conv_kwargs(self):
if self._config_dict['use_separable_conv']:
return {
'depthwise_initializer': tf_keras.initializers.VarianceScaling(
scale=2, mode='fan_out', distribution='untruncated_normal'),
'pointwise_initializer': tf_keras.initializers.VarianceScaling(
scale=2, mode='fan_out', distribution='untruncated_normal'),
'bias_initializer': tf.zeros_initializer(),
'depthwise_regularizer': self._config_dict['kernel_regularizer'],
'pointwise_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
}
else:
return {
'kernel_initializer': tf_keras.initializers.VarianceScaling(
scale=2, mode='fan_out', distribution='untruncated_normal'),
'bias_initializer': tf.zeros_initializer(),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
}
def _global_attention(self, feat0, feat1):
m = tf.math.reduce_max(feat0, axis=[1, 2], keepdims=True)
m = tf.math.sigmoid(m)
return feat0 + feat1 * m
def _build_feature_pyramid(self, feats):
num_output_connections = [0] * len(feats)
num_output_levels = self._max_level - self._min_level + 1
feat_levels = list(range(self._min_level, self._max_level + 1))
for i, block_spec in enumerate(self._block_specs):
new_level = block_spec.level
# Checks the range of input_offsets.
for input_offset in block_spec.input_offsets:
if input_offset >= len(feats):
raise ValueError(
'input_offset ({}) is larger than num feats({})'.format(
input_offset, len(feats)))
input0 = block_spec.input_offsets[0]
input1 = block_spec.input_offsets[1]
# Update graph with inputs.
node0 = feats[input0]
node0_level = feat_levels[input0]
num_output_connections[input0] += 1
node0 = self._resample_feature_map(node0, node0_level, new_level)
node1 = feats[input1]
node1_level = feat_levels[input1]
num_output_connections[input1] += 1
node1 = self._resample_feature_map(node1, node1_level, new_level)
# Combine node0 and node1 to create new feat.
if block_spec.combine_fn == 'sum':
new_node = node0 + node1
elif block_spec.combine_fn == 'attention':
if node0_level >= node1_level:
new_node = self._global_attention(node0, node1)
else:
new_node = self._global_attention(node1, node0)
else:
raise ValueError('unknown combine_fn `{}`.'
.format(block_spec.combine_fn))
# Add intermediate nodes that do not have any connections to output.
if block_spec.is_output:
for j, (feat, feat_level, num_output) in enumerate(
zip(feats, feat_levels, num_output_connections)):
if num_output == 0 and feat_level == new_level:
num_output_connections[j] += 1
feat_ = self._resample_feature_map(feat, feat_level, new_level)
new_node += feat_
new_node = self._activation(new_node)
new_node = self._conv_op(
filters=self._config_dict['num_filters'],
kernel_size=(3, 3),
padding='same',
**self._conv_kwargs)(new_node)
new_node = self._norm_op(**self._norm_kwargs)(new_node)
feats.append(new_node)
feat_levels.append(new_level)
num_output_connections.append(0)
output_feats = {}
for i in range(len(feats) - num_output_levels, len(feats)):
level = feat_levels[i]
output_feats[level] = feats[i]
logging.info('Output feature pyramid: %s', output_feats)
return output_feats
def get_config(self) -> Mapping[str, Any]:
return self._config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def output_specs(self) -> Mapping[str, tf.TensorShape]:
"""A dict of {level: TensorShape} pairs for the model output."""
return self._output_specs
@factory.register_decoder_builder('nasfpn')
def build_nasfpn_decoder(
input_specs: Mapping[str, tf.TensorShape],
model_config: hyperparams.Config,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
"""Builds NASFPN decoder from a config.
Args:
input_specs: A `dict` of input specifications. A dictionary consists of
{level: TensorShape} from a backbone.
model_config: A OneOfConfig. Model config.
l2_regularizer: A `tf_keras.regularizers.Regularizer` instance. Default to
None.
Returns:
A `tf_keras.Model` instance of the NASFPN decoder.
Raises:
ValueError: If the model_config.decoder.type is not `nasfpn`.
"""
decoder_type = model_config.decoder.type
decoder_cfg = model_config.decoder.get()
if decoder_type != 'nasfpn':
raise ValueError(f'Inconsistent decoder type {decoder_type}. '
'Need to be `nasfpn`.')
norm_activation_config = model_config.norm_activation
return NASFPN(
input_specs=input_specs,
min_level=model_config.min_level,
max_level=model_config.max_level,
num_filters=decoder_cfg.num_filters,
num_repeats=decoder_cfg.num_repeats,
use_separable_conv=decoder_cfg.use_separable_conv,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)
|