Spaces:
Runtime error
Runtime error
File size: 20,184 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of segmentation heads."""
from typing import List, Union, Optional, Mapping, Tuple, Any
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.vision.modeling.layers import nn_layers
from official.vision.ops import spatial_transform_ops
class MaskScoring(tf_keras.Model):
"""Creates a mask scoring layer.
This implements mask scoring layer from the paper:
Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang Huang, Xinggang Wang.
Mask Scoring R-CNN.
(https://arxiv.org/pdf/1903.00241.pdf)
"""
def __init__(
self,
num_classes: int,
fc_input_size: List[int],
num_convs: int = 3,
num_filters: int = 256,
use_depthwise_convolution: bool = False,
fc_dims: int = 1024,
num_fcs: int = 2,
activation: str = 'relu',
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
**kwargs):
"""Initializes mask scoring layer.
Args:
num_classes: An `int` for number of classes.
fc_input_size: A List of `int` for the input size of the
fully connected layers.
num_convs: An`int` for number of conv layers.
num_filters: An `int` for the number of filters for conv layers.
use_depthwise_convolution: A `bool`, whether or not using depthwise convs.
fc_dims: An `int` number of filters for each fully connected layers.
num_fcs: An `int` for number of fully connected layers.
activation: A `str` name of the activation function.
use_sync_bn: A bool, whether or not to use sync batch normalization.
norm_momentum: A float for the momentum in BatchNorm. Defaults to 0.99.
norm_epsilon: A float for the epsilon value in BatchNorm. Defaults to
0.001.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
**kwargs: Additional keyword arguments to be passed.
"""
super(MaskScoring, self).__init__(**kwargs)
self._config_dict = {
'num_classes': num_classes,
'num_convs': num_convs,
'num_filters': num_filters,
'fc_input_size': fc_input_size,
'fc_dims': fc_dims,
'num_fcs': num_fcs,
'use_sync_bn': use_sync_bn,
'use_depthwise_convolution': use_depthwise_convolution,
'norm_momentum': norm_momentum,
'norm_epsilon': norm_epsilon,
'activation': activation,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer,
}
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
self._activation = tf_utils.get_activation(activation)
def build(self, input_shape: Union[tf.TensorShape, List[tf.TensorShape]]):
"""Creates the variables of the mask scoring head."""
conv_op = tf_keras.layers.Conv2D
conv_kwargs = {
'filters': self._config_dict['num_filters'],
'kernel_size': 3,
'padding': 'same',
}
conv_kwargs.update({
'kernel_initializer': tf_keras.initializers.VarianceScaling(
scale=2, mode='fan_out', distribution='untruncated_normal'),
'bias_initializer': tf.zeros_initializer(),
'kernel_regularizer': self._config_dict['kernel_regularizer'],
'bias_regularizer': self._config_dict['bias_regularizer'],
})
bn_op = tf_keras.layers.BatchNormalization
bn_kwargs = {
'axis': self._bn_axis,
'momentum': self._config_dict['norm_momentum'],
'epsilon': self._config_dict['norm_epsilon'],
'synchronized': self._config_dict['use_sync_bn'],
}
self._convs = []
self._conv_norms = []
for i in range(self._config_dict['num_convs']):
if self._config_dict['use_depthwise_convolution']:
self._convs.append(
tf_keras.layers.DepthwiseConv2D(
name='mask-scoring-depthwise-conv-{}'.format(i),
kernel_size=3,
padding='same',
use_bias=False,
depthwise_initializer=tf_keras.initializers.RandomNormal(
stddev=0.01),
depthwise_regularizer=self._config_dict['kernel_regularizer'],
depth_multiplier=1))
norm_name = 'mask-scoring-depthwise-bn-{}'.format(i)
self._conv_norms.append(bn_op(name=norm_name, **bn_kwargs))
conv_name = 'mask-scoring-conv-{}'.format(i)
if 'kernel_initializer' in conv_kwargs:
conv_kwargs['kernel_initializer'] = tf_utils.clone_initializer(
conv_kwargs['kernel_initializer'])
if self._config_dict['use_depthwise_convolution']:
conv_kwargs['kernel_size'] = 1
self._convs.append(conv_op(name=conv_name, **conv_kwargs))
bn_name = 'mask-scoring-bn-{}'.format(i)
self._conv_norms.append(bn_op(name=bn_name, **bn_kwargs))
self._fcs = []
self._fc_norms = []
for i in range(self._config_dict['num_fcs']):
fc_name = 'mask-scoring-fc-{}'.format(i)
self._fcs.append(
tf_keras.layers.Dense(
units=self._config_dict['fc_dims'],
kernel_initializer=tf_keras.initializers.VarianceScaling(
scale=1 / 3.0, mode='fan_out', distribution='uniform'),
kernel_regularizer=self._config_dict['kernel_regularizer'],
bias_regularizer=self._config_dict['bias_regularizer'],
name=fc_name))
bn_name = 'mask-scoring-fc-bn-{}'.format(i)
self._fc_norms.append(bn_op(name=bn_name, **bn_kwargs))
self._classifier = tf_keras.layers.Dense(
units=self._config_dict['num_classes'],
kernel_initializer=tf_keras.initializers.RandomNormal(stddev=0.01),
bias_initializer=tf.zeros_initializer(),
kernel_regularizer=self._config_dict['kernel_regularizer'],
bias_regularizer=self._config_dict['bias_regularizer'],
name='iou-scores')
super(MaskScoring, self).build(input_shape)
def call(self, inputs: tf.Tensor, training: bool = None): # pytype: disable=signature-mismatch # overriding-parameter-count-checks
"""Forward pass mask scoring head.
Args:
inputs: A `tf.Tensor` of the shape [batch_size, width, size, num_classes],
representing the segmentation logits.
training: a `bool` indicating whether it is in `training` mode.
Returns:
mask_scores: A `tf.Tensor` of predicted mask scores
[batch_size, num_classes].
"""
x = tf.stop_gradient(inputs)
for conv, bn in zip(self._convs, self._conv_norms):
x = conv(x)
x = bn(x)
x = self._activation(x)
# Casts feat to float32 so the resize op can be run on TPU.
x = tf.cast(x, tf.float32)
x = tf.image.resize(x, size=self._config_dict['fc_input_size'],
method=tf.image.ResizeMethod.BILINEAR)
# Casts it back to be compatible with the rest opetations.
x = tf.cast(x, inputs.dtype)
_, h, w, filters = x.get_shape().as_list()
x = tf.reshape(x, [-1, h * w * filters])
for fc, bn in zip(self._fcs, self._fc_norms):
x = fc(x)
x = bn(x)
x = self._activation(x)
ious = self._classifier(x)
return ious
def get_config(self) -> Mapping[str, Any]:
return self._config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@tf_keras.utils.register_keras_serializable(package='Vision')
class SegmentationHead(tf_keras.layers.Layer):
"""Creates a segmentation head."""
def __init__(
self,
num_classes: int,
level: Union[int, str],
num_convs: int = 2,
num_filters: int = 256,
use_depthwise_convolution: bool = False,
prediction_kernel_size: int = 1,
upsample_factor: int = 1,
feature_fusion: Optional[str] = None,
decoder_min_level: Optional[int] = None,
decoder_max_level: Optional[int] = None,
low_level: int = 2,
low_level_num_filters: int = 48,
num_decoder_filters: int = 256,
activation: str = 'relu',
logit_activation: Optional[str] = None,
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
**kwargs):
"""Initializes a segmentation head.
Args:
num_classes: An `int` number of mask classification categories. The number
of classes does not include background class.
level: An `int` or `str`, level to use to build segmentation head.
num_convs: An `int` number of stacked convolution before the last
prediction layer.
num_filters: An `int` number to specify the number of filters used.
Default is 256.
use_depthwise_convolution: A bool to specify if use depthwise separable
convolutions.
prediction_kernel_size: An `int` number to specify the kernel size of the
prediction layer.
upsample_factor: An `int` number to specify the upsampling factor to
generate finer mask. Default 1 means no upsampling is applied.
feature_fusion: One of the constants in nn_layers.FeatureFusion, namely
`deeplabv3plus`, `pyramid_fusion`, `panoptic_fpn_fusion`,
`deeplabv3plus_sum_to_merge`, or None. If `deeplabv3plus`, features from
decoder_features[level] will be fused with low level feature maps from
backbone. If `pyramid_fusion`, multiscale features will be resized and
fused at the target level.
decoder_min_level: An `int` of minimum level from decoder to use in
feature fusion. It is only used when feature_fusion is set to
`panoptic_fpn_fusion`.
decoder_max_level: An `int` of maximum level from decoder to use in
feature fusion. It is only used when feature_fusion is set to
`panoptic_fpn_fusion`.
low_level: An `int` of backbone level to be used for feature fusion. It is
used when feature_fusion is set to `deeplabv3plus` or
`deeplabv3plus_sum_to_merge`.
low_level_num_filters: An `int` of reduced number of filters for the low
level features before fusing it with higher level features. It is only
used when feature_fusion is set to `deeplabv3plus` or
`deeplabv3plus_sum_to_merge`.
num_decoder_filters: An `int` of number of filters in the decoder outputs.
It is only used when feature_fusion is set to `panoptic_fpn_fusion`.
activation: A `str` that indicates which activation is used, e.g. 'relu',
'swish', etc.
logit_activation: Activation applied to the final classifier layer logits,
e.g. 'sigmoid', 'softmax'. Can be useful in cases when the task does not
use only cross entropy loss.
use_sync_bn: A `bool` that indicates whether to use synchronized batch
normalization across different replicas.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default is None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
**kwargs: Additional keyword arguments to be passed.
"""
super(SegmentationHead, self).__init__(**kwargs)
self._config_dict = {
'num_classes': num_classes,
'level': level,
'num_convs': num_convs,
'num_filters': num_filters,
'use_depthwise_convolution': use_depthwise_convolution,
'prediction_kernel_size': prediction_kernel_size,
'upsample_factor': upsample_factor,
'feature_fusion': feature_fusion,
'decoder_min_level': decoder_min_level,
'decoder_max_level': decoder_max_level,
'low_level': low_level,
'low_level_num_filters': low_level_num_filters,
'num_decoder_filters': num_decoder_filters,
'activation': activation,
'logit_activation': logit_activation,
'use_sync_bn': use_sync_bn,
'norm_momentum': norm_momentum,
'norm_epsilon': norm_epsilon,
'kernel_regularizer': kernel_regularizer,
'bias_regularizer': bias_regularizer
}
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
self._activation = tf_utils.get_activation(activation)
def build(self, input_shape: Union[tf.TensorShape, List[tf.TensorShape]]):
"""Creates the variables of the segmentation head."""
use_depthwise_convolution = self._config_dict['use_depthwise_convolution']
conv_op = tf_keras.layers.Conv2D
bn_op = tf_keras.layers.BatchNormalization
bn_kwargs = {
'axis': self._bn_axis,
'momentum': self._config_dict['norm_momentum'],
'epsilon': self._config_dict['norm_epsilon'],
'synchronized': self._config_dict['use_sync_bn'],
}
if self._config_dict['feature_fusion'] in {'deeplabv3plus',
'deeplabv3plus_sum_to_merge'}:
# Deeplabv3+ feature fusion layers.
self._dlv3p_conv = conv_op(
kernel_size=1,
padding='same',
use_bias=False,
kernel_initializer=tf_keras.initializers.RandomNormal(stddev=0.01),
kernel_regularizer=self._config_dict['kernel_regularizer'],
name='segmentation_head_deeplabv3p_fusion_conv',
filters=self._config_dict['low_level_num_filters'])
self._dlv3p_norm = bn_op(
name='segmentation_head_deeplabv3p_fusion_norm', **bn_kwargs)
elif self._config_dict['feature_fusion'] == 'panoptic_fpn_fusion':
self._panoptic_fpn_fusion = nn_layers.PanopticFPNFusion(
min_level=self._config_dict['decoder_min_level'],
max_level=self._config_dict['decoder_max_level'],
target_level=self._config_dict['level'],
num_filters=self._config_dict['num_filters'],
num_fpn_filters=self._config_dict['num_decoder_filters'],
activation=self._config_dict['activation'],
kernel_regularizer=self._config_dict['kernel_regularizer'],
bias_regularizer=self._config_dict['bias_regularizer'])
# Segmentation head layers.
self._convs = []
self._norms = []
for i in range(self._config_dict['num_convs']):
if use_depthwise_convolution:
self._convs.append(
tf_keras.layers.DepthwiseConv2D(
name='segmentation_head_depthwise_conv_{}'.format(i),
kernel_size=3,
padding='same',
use_bias=False,
depthwise_initializer=tf_keras.initializers.RandomNormal(
stddev=0.01),
depthwise_regularizer=self._config_dict['kernel_regularizer'],
depth_multiplier=1))
norm_name = 'segmentation_head_depthwise_norm_{}'.format(i)
self._norms.append(bn_op(name=norm_name, **bn_kwargs))
conv_name = 'segmentation_head_conv_{}'.format(i)
self._convs.append(
conv_op(
name=conv_name,
filters=self._config_dict['num_filters'],
kernel_size=3 if not use_depthwise_convolution else 1,
padding='same',
use_bias=False,
kernel_initializer=tf_keras.initializers.RandomNormal(
stddev=0.01),
kernel_regularizer=self._config_dict['kernel_regularizer']))
norm_name = 'segmentation_head_norm_{}'.format(i)
self._norms.append(bn_op(name=norm_name, **bn_kwargs))
self._classifier = conv_op(
name='segmentation_output',
filters=self._config_dict['num_classes'],
kernel_size=self._config_dict['prediction_kernel_size'],
padding='same',
activation=self._config_dict['logit_activation'],
bias_initializer=tf.zeros_initializer(),
kernel_initializer=tf_keras.initializers.RandomNormal(stddev=0.01),
kernel_regularizer=self._config_dict['kernel_regularizer'],
bias_regularizer=self._config_dict['bias_regularizer'])
super().build(input_shape)
def call(self, inputs: Tuple[Union[tf.Tensor, Mapping[str, tf.Tensor]],
Union[tf.Tensor, Mapping[str, tf.Tensor]]]):
"""Forward pass of the segmentation head.
It supports both a tuple of 2 tensors or 2 dictionaries. The first is
backbone endpoints, and the second is decoder endpoints. When inputs are
tensors, they are from a single level of feature maps. When inputs are
dictionaries, they contain multiple levels of feature maps, where the key
is the index of feature map.
Args:
inputs: A tuple of 2 feature map tensors of shape
[batch, height_l, width_l, channels] or 2 dictionaries of tensors:
- key: A `str` of the level of the multilevel features.
- values: A `tf.Tensor` of the feature map tensors, whose shape is
[batch, height_l, width_l, channels].
The first is backbone endpoints, and the second is decoder endpoints.
Returns:
segmentation prediction mask: A `tf.Tensor` of the segmentation mask
scores predicted from input features.
"""
backbone_output = inputs[0]
decoder_output = inputs[1]
if self._config_dict['feature_fusion'] in {'deeplabv3plus',
'deeplabv3plus_sum_to_merge'}:
# deeplabv3+ feature fusion
x = decoder_output[str(self._config_dict['level'])] if isinstance(
decoder_output, dict) else decoder_output
y = backbone_output[str(self._config_dict['low_level'])] if isinstance(
backbone_output, dict) else backbone_output
y = self._dlv3p_norm(self._dlv3p_conv(y))
y = self._activation(y)
x = tf.image.resize(
x, tf.shape(y)[1:3], method=tf.image.ResizeMethod.BILINEAR)
x = tf.cast(x, dtype=y.dtype)
if self._config_dict['feature_fusion'] == 'deeplabv3plus':
x = tf.concat([x, y], axis=self._bn_axis)
else:
x = tf_keras.layers.Add()([x, y])
elif self._config_dict['feature_fusion'] == 'pyramid_fusion':
if not isinstance(decoder_output, dict):
raise ValueError('Only support dictionary decoder_output.')
x = nn_layers.pyramid_feature_fusion(decoder_output,
self._config_dict['level'])
elif self._config_dict['feature_fusion'] == 'panoptic_fpn_fusion':
x = self._panoptic_fpn_fusion(decoder_output)
else:
x = decoder_output[str(self._config_dict['level'])] if isinstance(
decoder_output, dict) else decoder_output
for conv, norm in zip(self._convs, self._norms):
x = conv(x)
x = norm(x)
x = self._activation(x)
if self._config_dict['upsample_factor'] > 1:
x = spatial_transform_ops.nearest_upsampling(
x, scale=self._config_dict['upsample_factor'])
return self._classifier(x)
def get_config(self):
base_config = super().get_config()
return dict(list(base_config.items()) + list(self._config_dict.items()))
@classmethod
def from_config(cls, config):
return cls(**config)
|