File size: 20,184 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of segmentation heads."""
from typing import List, Union, Optional, Mapping, Tuple, Any
import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.vision.modeling.layers import nn_layers
from official.vision.ops import spatial_transform_ops


class MaskScoring(tf_keras.Model):
  """Creates a mask scoring layer.

  This implements mask scoring layer from the paper:

  Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang Huang, Xinggang Wang.
  Mask Scoring R-CNN.
  (https://arxiv.org/pdf/1903.00241.pdf)
  """

  def __init__(
      self,
      num_classes: int,
      fc_input_size: List[int],
      num_convs: int = 3,
      num_filters: int = 256,
      use_depthwise_convolution: bool = False,
      fc_dims: int = 1024,
      num_fcs: int = 2,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      **kwargs):

    """Initializes mask scoring layer.

    Args:
      num_classes: An `int` for number of classes.
      fc_input_size: A List of `int` for the input size of the
        fully connected layers.
      num_convs: An`int` for number of conv layers.
      num_filters: An `int` for the number of filters for conv layers.
      use_depthwise_convolution: A `bool`, whether or not using depthwise convs.
      fc_dims: An `int` number of filters for each fully connected layers.
      num_fcs: An `int` for number of fully connected layers.
      activation: A `str` name of the activation function.
      use_sync_bn: A bool, whether or not to use sync batch normalization.
      norm_momentum: A float for the momentum in BatchNorm. Defaults to 0.99.
      norm_epsilon: A float for the epsilon value in BatchNorm. Defaults to
        0.001.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default is None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(MaskScoring, self).__init__(**kwargs)

    self._config_dict = {
        'num_classes': num_classes,
        'num_convs': num_convs,
        'num_filters': num_filters,
        'fc_input_size': fc_input_size,
        'fc_dims': fc_dims,
        'num_fcs': num_fcs,
        'use_sync_bn': use_sync_bn,
        'use_depthwise_convolution': use_depthwise_convolution,
        'norm_momentum': norm_momentum,
        'norm_epsilon': norm_epsilon,
        'activation': activation,
        'kernel_regularizer': kernel_regularizer,
        'bias_regularizer': bias_regularizer,
    }

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._activation = tf_utils.get_activation(activation)

  def build(self, input_shape: Union[tf.TensorShape, List[tf.TensorShape]]):
    """Creates the variables of the mask scoring head."""
    conv_op = tf_keras.layers.Conv2D
    conv_kwargs = {
        'filters': self._config_dict['num_filters'],
        'kernel_size': 3,
        'padding': 'same',
    }
    conv_kwargs.update({
        'kernel_initializer': tf_keras.initializers.VarianceScaling(
            scale=2, mode='fan_out', distribution='untruncated_normal'),
        'bias_initializer': tf.zeros_initializer(),
        'kernel_regularizer': self._config_dict['kernel_regularizer'],
        'bias_regularizer': self._config_dict['bias_regularizer'],
    })
    bn_op = tf_keras.layers.BatchNormalization
    bn_kwargs = {
        'axis': self._bn_axis,
        'momentum': self._config_dict['norm_momentum'],
        'epsilon': self._config_dict['norm_epsilon'],
        'synchronized': self._config_dict['use_sync_bn'],
    }

    self._convs = []
    self._conv_norms = []
    for i in range(self._config_dict['num_convs']):
      if self._config_dict['use_depthwise_convolution']:
        self._convs.append(
            tf_keras.layers.DepthwiseConv2D(
                name='mask-scoring-depthwise-conv-{}'.format(i),
                kernel_size=3,
                padding='same',
                use_bias=False,
                depthwise_initializer=tf_keras.initializers.RandomNormal(
                    stddev=0.01),
                depthwise_regularizer=self._config_dict['kernel_regularizer'],
                depth_multiplier=1))
        norm_name = 'mask-scoring-depthwise-bn-{}'.format(i)
        self._conv_norms.append(bn_op(name=norm_name, **bn_kwargs))
      conv_name = 'mask-scoring-conv-{}'.format(i)
      if 'kernel_initializer' in conv_kwargs:
        conv_kwargs['kernel_initializer'] = tf_utils.clone_initializer(
            conv_kwargs['kernel_initializer'])
      if self._config_dict['use_depthwise_convolution']:
        conv_kwargs['kernel_size'] = 1
      self._convs.append(conv_op(name=conv_name, **conv_kwargs))
      bn_name = 'mask-scoring-bn-{}'.format(i)
      self._conv_norms.append(bn_op(name=bn_name, **bn_kwargs))

    self._fcs = []
    self._fc_norms = []
    for i in range(self._config_dict['num_fcs']):
      fc_name = 'mask-scoring-fc-{}'.format(i)
      self._fcs.append(
          tf_keras.layers.Dense(
              units=self._config_dict['fc_dims'],
              kernel_initializer=tf_keras.initializers.VarianceScaling(
                  scale=1 / 3.0, mode='fan_out', distribution='uniform'),
              kernel_regularizer=self._config_dict['kernel_regularizer'],
              bias_regularizer=self._config_dict['bias_regularizer'],
              name=fc_name))
      bn_name = 'mask-scoring-fc-bn-{}'.format(i)
      self._fc_norms.append(bn_op(name=bn_name, **bn_kwargs))

    self._classifier = tf_keras.layers.Dense(
        units=self._config_dict['num_classes'],
        kernel_initializer=tf_keras.initializers.RandomNormal(stddev=0.01),
        bias_initializer=tf.zeros_initializer(),
        kernel_regularizer=self._config_dict['kernel_regularizer'],
        bias_regularizer=self._config_dict['bias_regularizer'],
        name='iou-scores')

    super(MaskScoring, self).build(input_shape)

  def call(self, inputs: tf.Tensor, training: bool = None):  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
    """Forward pass mask scoring head.

    Args:
      inputs: A `tf.Tensor` of the shape [batch_size, width, size, num_classes],
      representing the segmentation logits.
      training: a `bool` indicating whether it is in `training` mode.

    Returns:
      mask_scores: A `tf.Tensor` of predicted mask scores
        [batch_size, num_classes].
    """
    x = tf.stop_gradient(inputs)
    for conv, bn in zip(self._convs, self._conv_norms):
      x = conv(x)
      x = bn(x)
      x = self._activation(x)

    # Casts feat to float32 so the resize op can be run on TPU.
    x = tf.cast(x, tf.float32)
    x = tf.image.resize(x, size=self._config_dict['fc_input_size'],
                        method=tf.image.ResizeMethod.BILINEAR)
    # Casts it back to be compatible with the rest opetations.
    x = tf.cast(x, inputs.dtype)

    _, h, w, filters = x.get_shape().as_list()
    x = tf.reshape(x, [-1, h * w * filters])

    for fc, bn in zip(self._fcs, self._fc_norms):
      x = fc(x)
      x = bn(x)
      x = self._activation(x)

    ious = self._classifier(x)
    return ious

  def get_config(self) -> Mapping[str, Any]:
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)


@tf_keras.utils.register_keras_serializable(package='Vision')
class SegmentationHead(tf_keras.layers.Layer):
  """Creates a segmentation head."""

  def __init__(
      self,
      num_classes: int,
      level: Union[int, str],
      num_convs: int = 2,
      num_filters: int = 256,
      use_depthwise_convolution: bool = False,
      prediction_kernel_size: int = 1,
      upsample_factor: int = 1,
      feature_fusion: Optional[str] = None,
      decoder_min_level: Optional[int] = None,
      decoder_max_level: Optional[int] = None,
      low_level: int = 2,
      low_level_num_filters: int = 48,
      num_decoder_filters: int = 256,
      activation: str = 'relu',
      logit_activation: Optional[str] = None,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      **kwargs):
    """Initializes a segmentation head.

    Args:
      num_classes: An `int` number of mask classification categories. The number
        of classes does not include background class.
      level: An `int` or `str`, level to use to build segmentation head.
      num_convs: An `int` number of stacked convolution before the last
        prediction layer.
      num_filters: An `int` number to specify the number of filters used.
        Default is 256.
      use_depthwise_convolution: A bool to specify if use depthwise separable
        convolutions.
      prediction_kernel_size: An `int` number to specify the kernel size of the
      prediction layer.
      upsample_factor: An `int` number to specify the upsampling factor to
        generate finer mask. Default 1 means no upsampling is applied.
      feature_fusion: One of the constants in nn_layers.FeatureFusion, namely
        `deeplabv3plus`, `pyramid_fusion`, `panoptic_fpn_fusion`,
        `deeplabv3plus_sum_to_merge`, or None. If `deeplabv3plus`, features from
        decoder_features[level] will be fused with low level feature maps from
        backbone. If `pyramid_fusion`, multiscale features will be resized and
        fused at the target level.
      decoder_min_level: An `int` of minimum level from decoder to use in
        feature fusion. It is only used when feature_fusion is set to
        `panoptic_fpn_fusion`.
      decoder_max_level: An `int` of maximum level from decoder to use in
        feature fusion. It is only used when feature_fusion is set to
        `panoptic_fpn_fusion`.
      low_level: An `int` of backbone level to be used for feature fusion. It is
        used when feature_fusion is set to `deeplabv3plus` or
        `deeplabv3plus_sum_to_merge`.
      low_level_num_filters: An `int` of reduced number of filters for the low
        level features before fusing it with higher level features. It is only
        used when feature_fusion is set to `deeplabv3plus` or
        `deeplabv3plus_sum_to_merge`.
      num_decoder_filters: An `int` of number of filters in the decoder outputs.
        It is only used when feature_fusion is set to `panoptic_fpn_fusion`.
      activation: A `str` that indicates which activation is used, e.g. 'relu',
        'swish', etc.
      logit_activation: Activation applied to the final classifier layer logits,
        e.g. 'sigmoid', 'softmax'. Can be useful in cases when the task does not
        use only cross entropy loss.
      use_sync_bn: A `bool` that indicates whether to use synchronized batch
        normalization across different replicas.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default is None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(SegmentationHead, self).__init__(**kwargs)

    self._config_dict = {
        'num_classes': num_classes,
        'level': level,
        'num_convs': num_convs,
        'num_filters': num_filters,
        'use_depthwise_convolution': use_depthwise_convolution,
        'prediction_kernel_size': prediction_kernel_size,
        'upsample_factor': upsample_factor,
        'feature_fusion': feature_fusion,
        'decoder_min_level': decoder_min_level,
        'decoder_max_level': decoder_max_level,
        'low_level': low_level,
        'low_level_num_filters': low_level_num_filters,
        'num_decoder_filters': num_decoder_filters,
        'activation': activation,
        'logit_activation': logit_activation,
        'use_sync_bn': use_sync_bn,
        'norm_momentum': norm_momentum,
        'norm_epsilon': norm_epsilon,
        'kernel_regularizer': kernel_regularizer,
        'bias_regularizer': bias_regularizer
    }
    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._activation = tf_utils.get_activation(activation)

  def build(self, input_shape: Union[tf.TensorShape, List[tf.TensorShape]]):
    """Creates the variables of the segmentation head."""
    use_depthwise_convolution = self._config_dict['use_depthwise_convolution']
    conv_op = tf_keras.layers.Conv2D
    bn_op = tf_keras.layers.BatchNormalization
    bn_kwargs = {
        'axis': self._bn_axis,
        'momentum': self._config_dict['norm_momentum'],
        'epsilon': self._config_dict['norm_epsilon'],
        'synchronized': self._config_dict['use_sync_bn'],
    }

    if self._config_dict['feature_fusion'] in {'deeplabv3plus',
                                               'deeplabv3plus_sum_to_merge'}:
      # Deeplabv3+ feature fusion layers.
      self._dlv3p_conv = conv_op(
          kernel_size=1,
          padding='same',
          use_bias=False,
          kernel_initializer=tf_keras.initializers.RandomNormal(stddev=0.01),
          kernel_regularizer=self._config_dict['kernel_regularizer'],
          name='segmentation_head_deeplabv3p_fusion_conv',
          filters=self._config_dict['low_level_num_filters'])

      self._dlv3p_norm = bn_op(
          name='segmentation_head_deeplabv3p_fusion_norm', **bn_kwargs)

    elif self._config_dict['feature_fusion'] == 'panoptic_fpn_fusion':
      self._panoptic_fpn_fusion = nn_layers.PanopticFPNFusion(
          min_level=self._config_dict['decoder_min_level'],
          max_level=self._config_dict['decoder_max_level'],
          target_level=self._config_dict['level'],
          num_filters=self._config_dict['num_filters'],
          num_fpn_filters=self._config_dict['num_decoder_filters'],
          activation=self._config_dict['activation'],
          kernel_regularizer=self._config_dict['kernel_regularizer'],
          bias_regularizer=self._config_dict['bias_regularizer'])

    # Segmentation head layers.
    self._convs = []
    self._norms = []
    for i in range(self._config_dict['num_convs']):
      if use_depthwise_convolution:
        self._convs.append(
            tf_keras.layers.DepthwiseConv2D(
                name='segmentation_head_depthwise_conv_{}'.format(i),
                kernel_size=3,
                padding='same',
                use_bias=False,
                depthwise_initializer=tf_keras.initializers.RandomNormal(
                    stddev=0.01),
                depthwise_regularizer=self._config_dict['kernel_regularizer'],
                depth_multiplier=1))
        norm_name = 'segmentation_head_depthwise_norm_{}'.format(i)
        self._norms.append(bn_op(name=norm_name, **bn_kwargs))
      conv_name = 'segmentation_head_conv_{}'.format(i)
      self._convs.append(
          conv_op(
              name=conv_name,
              filters=self._config_dict['num_filters'],
              kernel_size=3 if not use_depthwise_convolution else 1,
              padding='same',
              use_bias=False,
              kernel_initializer=tf_keras.initializers.RandomNormal(
                  stddev=0.01),
              kernel_regularizer=self._config_dict['kernel_regularizer']))
      norm_name = 'segmentation_head_norm_{}'.format(i)
      self._norms.append(bn_op(name=norm_name, **bn_kwargs))

    self._classifier = conv_op(
        name='segmentation_output',
        filters=self._config_dict['num_classes'],
        kernel_size=self._config_dict['prediction_kernel_size'],
        padding='same',
        activation=self._config_dict['logit_activation'],
        bias_initializer=tf.zeros_initializer(),
        kernel_initializer=tf_keras.initializers.RandomNormal(stddev=0.01),
        kernel_regularizer=self._config_dict['kernel_regularizer'],
        bias_regularizer=self._config_dict['bias_regularizer'])

    super().build(input_shape)

  def call(self, inputs: Tuple[Union[tf.Tensor, Mapping[str, tf.Tensor]],
                               Union[tf.Tensor, Mapping[str, tf.Tensor]]]):
    """Forward pass of the segmentation head.

    It supports both a tuple of 2 tensors or 2 dictionaries. The first is
    backbone endpoints, and the second is decoder endpoints. When inputs are
    tensors, they are from a single level of feature maps. When inputs are
    dictionaries, they contain multiple levels of feature maps, where the key
    is the index of feature map.

    Args:
      inputs: A tuple of 2 feature map tensors of shape
        [batch, height_l, width_l, channels] or 2 dictionaries of tensors:
        - key: A `str` of the level of the multilevel features.
        - values: A `tf.Tensor` of the feature map tensors, whose shape is
            [batch, height_l, width_l, channels].
        The first is backbone endpoints, and the second is decoder endpoints.
    Returns:
      segmentation prediction mask: A `tf.Tensor` of the segmentation mask
        scores predicted from input features.
    """

    backbone_output = inputs[0]
    decoder_output = inputs[1]
    if self._config_dict['feature_fusion'] in {'deeplabv3plus',
                                               'deeplabv3plus_sum_to_merge'}:
      # deeplabv3+ feature fusion
      x = decoder_output[str(self._config_dict['level'])] if isinstance(
          decoder_output, dict) else decoder_output
      y = backbone_output[str(self._config_dict['low_level'])] if isinstance(
          backbone_output, dict) else backbone_output
      y = self._dlv3p_norm(self._dlv3p_conv(y))
      y = self._activation(y)

      x = tf.image.resize(
          x, tf.shape(y)[1:3], method=tf.image.ResizeMethod.BILINEAR)
      x = tf.cast(x, dtype=y.dtype)
      if self._config_dict['feature_fusion'] == 'deeplabv3plus':
        x = tf.concat([x, y], axis=self._bn_axis)
      else:
        x = tf_keras.layers.Add()([x, y])
    elif self._config_dict['feature_fusion'] == 'pyramid_fusion':
      if not isinstance(decoder_output, dict):
        raise ValueError('Only support dictionary decoder_output.')
      x = nn_layers.pyramid_feature_fusion(decoder_output,
                                           self._config_dict['level'])
    elif self._config_dict['feature_fusion'] == 'panoptic_fpn_fusion':
      x = self._panoptic_fpn_fusion(decoder_output)
    else:
      x = decoder_output[str(self._config_dict['level'])] if isinstance(
          decoder_output, dict) else decoder_output

    for conv, norm in zip(self._convs, self._norms):
      x = conv(x)
      x = norm(x)
      x = self._activation(x)
    if self._config_dict['upsample_factor'] > 1:
      x = spatial_transform_ops.nearest_upsampling(
          x, scale=self._config_dict['upsample_factor'])

    return self._classifier(x)

  def get_config(self):
    base_config = super().get_config()
    return dict(list(base_config.items()) + list(self._config_dict.items()))

  @classmethod
  def from_config(cls, config):
    return cls(**config)