File size: 7,272 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Library to facilitate TFLite model conversion."""
import functools
from typing import Iterator, List, Optional

from absl import logging
import tensorflow as tf, tf_keras

from official.core import base_task
from official.core import config_definitions as cfg
from official.vision import configs
from official.vision import tasks


def create_representative_dataset(
    params: cfg.ExperimentConfig,
    task: Optional[base_task.Task] = None) -> tf.data.Dataset:
  """Creates a tf.data.Dataset to load images for representative dataset.

  Args:
    params: An ExperimentConfig.
    task: An optional task instance. If it is None, task will be built according
      to the task type in params.

  Returns:
    A tf.data.Dataset instance.

  Raises:
    ValueError: If task is not supported.
  """
  if task is None:
    if isinstance(params.task,
                  configs.image_classification.ImageClassificationTask):

      task = tasks.image_classification.ImageClassificationTask(params.task)
    elif isinstance(params.task, configs.retinanet.RetinaNetTask):
      task = tasks.retinanet.RetinaNetTask(params.task)
    elif isinstance(params.task, configs.maskrcnn.MaskRCNNTask):
      task = tasks.maskrcnn.MaskRCNNTask(params.task)
    elif isinstance(params.task,
                    configs.semantic_segmentation.SemanticSegmentationTask):
      task = tasks.semantic_segmentation.SemanticSegmentationTask(params.task)
    else:
      raise ValueError('Task {} not supported.'.format(type(params.task)))
  # Ensure batch size is 1 for TFLite model.
  params.task.train_data.global_batch_size = 1
  params.task.train_data.dtype = 'float32'
  logging.info('Task config: %s', params.task.as_dict())
  return task.build_inputs(params=params.task.train_data)


def representative_dataset(
    params: cfg.ExperimentConfig,
    task: Optional[base_task.Task] = None,
    calibration_steps: int = 2000) -> Iterator[List[tf.Tensor]]:
  """"Creates representative dataset for input calibration.

  Args:
    params: An ExperimentConfig.
    task: An optional task instance. If it is None, task will be built according
      to the task type in params.
    calibration_steps: The steps to do calibration.

  Yields:
    An input image tensor.
  """
  dataset = create_representative_dataset(params=params, task=task)
  for image, _ in dataset.take(calibration_steps):
    # Skip images that do not have 3 channels.
    if image.shape[-1] != 3:
      continue
    yield [image]


def convert_tflite_model(
    saved_model_dir: Optional[str] = None,
    concrete_function: Optional[tf.types.experimental.ConcreteFunction] = None,
    model: Optional[tf.Module] = None,
    quant_type: Optional[str] = None,
    params: Optional[cfg.ExperimentConfig] = None,
    task: Optional[base_task.Task] = None,
    calibration_steps: Optional[int] = 2000,
    denylisted_ops: Optional[List[str]] = None,
) -> 'bytes':
  """Converts and returns a TFLite model.

  Args:
    saved_model_dir: The directory to the SavedModel.
    concrete_function: An optional concrete function to be exported.
    model: An optional tf_keras.Model instance. If both `saved_model_dir` and
      `concrete_function` are not available, convert this model to TFLite.
    quant_type: The post training quantization (PTQ) method. It can be one of
      `default` (dynamic range), `fp16` (float16), `int8` (integer wih float
      fallback), `int8_full` (integer only) and None (no quantization).
    params: An optional ExperimentConfig to load and preprocess input images to
      do calibration for integer quantization.
    task: An optional task instance. If it is None, task will be built according
      to the task type in params.
    calibration_steps: The steps to do calibration.
    denylisted_ops: A list of strings containing ops that are excluded from
      integer quantization.

  Returns:
    A converted TFLite model with optional PTQ.

  Raises:
    ValueError: If `representative_dataset_path` is not present if integer
      quantization is requested, or `saved_model_dir`, `concrete_function` or
      `model` are not provided.
  """
  if saved_model_dir:
    converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
  elif concrete_function is not None:
    converter = tf.lite.TFLiteConverter.from_concrete_functions(
        [concrete_function]
    )
  elif model is not None:
    converter = tf.lite.TFLiteConverter.from_keras_model(model)
  else:
    raise ValueError(
        '`saved_model_dir`, `model` or `concrete_function` must be specified.'
    )

  if quant_type:
    if quant_type.startswith('int8'):
      converter.optimizations = [tf.lite.Optimize.DEFAULT]
      converter.representative_dataset = functools.partial(
          representative_dataset,
          params=params,
          task=task,
          calibration_steps=calibration_steps)
      if quant_type.startswith('int8_full'):
        converter.target_spec.supported_ops = [
            tf.lite.OpsSet.TFLITE_BUILTINS_INT8
        ]
      if quant_type == 'int8_full':
        converter.inference_input_type = tf.uint8
        converter.inference_output_type = tf.uint8
      if quant_type == 'int8_full_int8_io':
        converter.inference_input_type = tf.int8
        converter.inference_output_type = tf.int8

      if denylisted_ops:
        debug_options = tf.lite.experimental.QuantizationDebugOptions(
            denylisted_ops=denylisted_ops)
        debugger = tf.lite.experimental.QuantizationDebugger(
            converter=converter,
            debug_dataset=functools.partial(
                representative_dataset,
                params=params,
                calibration_steps=calibration_steps),
            debug_options=debug_options)
        debugger.run()
        return debugger.get_nondebug_quantized_model()

    elif quant_type == 'uint8':
      converter.optimizations = [tf.lite.Optimize.DEFAULT]
      converter.default_ranges_stats = (-10, 10)
      converter.inference_type = tf.uint8
      converter.quantized_input_stats = {'input_placeholder': (0., 1.)}
    elif quant_type == 'fp16':
      converter.optimizations = [tf.lite.Optimize.DEFAULT]
      converter.target_spec.supported_types = [tf.float16]
    elif quant_type in ('default', 'qat_fp32_io'):
      converter.optimizations = [tf.lite.Optimize.DEFAULT]
    elif quant_type == 'qat':
      converter.optimizations = [tf.lite.Optimize.DEFAULT]
      converter.inference_input_type = tf.uint8  # or tf.int8
      converter.inference_output_type = tf.uint8  # or tf.int8
    else:
      raise ValueError(f'quantization type {quant_type} is not supported.')

  return converter.convert()