Spaces:
Runtime error
Runtime error
File size: 24,208 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base target assigner module.
The job of a TargetAssigner is, for a given set of anchors (bounding boxes) and
groundtruth detections (bounding boxes), to assign classification and regression
targets to each anchor as well as weights to each anchor (specifying, e.g.,
which anchors should not contribute to training loss).
It assigns classification/regression targets by performing the following steps:
1) Computing pairwise similarity between anchors and groundtruth boxes using a
provided RegionSimilarity Calculator
2) Computing a matching based on the similarity matrix using a provided Matcher
3) Assigning regression targets based on the matching and a provided BoxCoder
4) Assigning classification targets based on the matching and groundtruth labels
Note that TargetAssigners only operate on detections from a single
image at a time, so any logic for applying a TargetAssigner to multiple
images must be handled externally.
"""
import tensorflow as tf, tf_keras
from official.vision.utils.object_detection import box_list
from official.vision.utils.object_detection import shape_utils
KEYPOINTS_FIELD_NAME = 'keypoints'
class TargetAssigner(object):
"""Target assigner to compute classification and regression targets."""
def __init__(self,
similarity_calc,
matcher,
box_coder,
negative_class_weight=1.0,
unmatched_cls_target=None):
"""Construct Object Detection Target Assigner.
Args:
similarity_calc: a RegionSimilarityCalculator
matcher: Matcher used to match groundtruth to anchors.
box_coder: BoxCoder used to encode matching groundtruth boxes with respect
to anchors.
negative_class_weight: classification weight to be associated to negative
anchors (default: 1.0). The weight must be in [0., 1.].
unmatched_cls_target: a float32 tensor with shape [d_1, d_2, ..., d_k]
which is consistent with the classification target for each anchor (and
can be empty for scalar targets). This shape must thus be compatible
with the groundtruth labels that are passed to the "assign" function
(which have shape [num_gt_boxes, d_1, d_2, ..., d_k]). If set to None,
unmatched_cls_target is set to be [0] for each anchor.
Raises:
ValueError: if similarity_calc is not a RegionSimilarityCalculator or
if matcher is not a Matcher or if box_coder is not a BoxCoder
"""
self._similarity_calc = similarity_calc
self._matcher = matcher
self._box_coder = box_coder
self._negative_class_weight = negative_class_weight
if unmatched_cls_target is None:
self._unmatched_cls_target = tf.constant([0], tf.float32)
else:
self._unmatched_cls_target = unmatched_cls_target
@property
def box_coder(self):
return self._box_coder
def assign(self,
anchors,
groundtruth_boxes,
groundtruth_labels=None,
groundtruth_weights=None,
**params):
"""Assign classification and regression targets to each anchor.
For a given set of anchors and groundtruth detections, match anchors
to groundtruth_boxes and assign classification and regression targets to
each anchor as well as weights based on the resulting match (specifying,
e.g., which anchors should not contribute to training loss).
Anchors that are not matched to anything are given a classification target
of self._unmatched_cls_target which can be specified via the constructor.
Args:
anchors: a BoxList representing N anchors
groundtruth_boxes: a BoxList representing M groundtruth boxes
groundtruth_labels: a tensor of shape [M, d_1, ... d_k] with labels for
each of the ground_truth boxes. The subshape [d_1, ... d_k] can be empty
(corresponding to scalar inputs). When set to None, groundtruth_labels
assumes a binary problem where all ground_truth boxes get a positive
label (of 1).
groundtruth_weights: a float tensor of shape [M] indicating the weight to
assign to all anchors match to a particular groundtruth box. The weights
must be in [0., 1.]. If None, all weights are set to 1.
**params: Additional keyword arguments for specific implementations of the
Matcher.
Returns:
cls_targets: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k],
where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels
which has shape [num_gt_boxes, d_1, d_2, ... d_k].
cls_weights: a float32 tensor with shape [num_anchors]
reg_targets: a float32 tensor with shape [num_anchors, box_code_dimension]
reg_weights: a float32 tensor with shape [num_anchors]
match: a matcher.Match object encoding the match between anchors and
groundtruth boxes, with rows corresponding to groundtruth boxes
and columns corresponding to anchors.
Raises:
ValueError: if anchors or groundtruth_boxes are not of type
box_list.BoxList
"""
if not isinstance(anchors, box_list.BoxList):
raise ValueError('anchors must be an BoxList')
if not isinstance(groundtruth_boxes, box_list.BoxList):
raise ValueError('groundtruth_boxes must be an BoxList')
if groundtruth_labels is None:
groundtruth_labels = tf.ones(
tf.expand_dims(groundtruth_boxes.num_boxes(), 0))
groundtruth_labels = tf.expand_dims(groundtruth_labels, -1)
unmatched_shape_assert = shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[1:],
shape_utils.combined_static_and_dynamic_shape(
self._unmatched_cls_target))
labels_and_box_shapes_assert = shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[:1],
shape_utils.combined_static_and_dynamic_shape(
groundtruth_boxes.get())[:1])
if groundtruth_weights is None:
num_gt_boxes = groundtruth_boxes.num_boxes_static()
if not num_gt_boxes:
num_gt_boxes = groundtruth_boxes.num_boxes()
groundtruth_weights = tf.ones([num_gt_boxes], dtype=tf.float32)
with tf.control_dependencies(
[unmatched_shape_assert, labels_and_box_shapes_assert]):
match_quality_matrix = self._similarity_calc(
groundtruth_boxes.get(), anchors.get())
match = self._matcher.match(match_quality_matrix, **params)
reg_targets = self._create_regression_targets(anchors, groundtruth_boxes,
match)
cls_targets = self._create_classification_targets(groundtruth_labels,
match)
reg_weights = self._create_regression_weights(match, groundtruth_weights)
cls_weights = self._create_classification_weights(match,
groundtruth_weights)
num_anchors = anchors.num_boxes_static()
if num_anchors is not None:
reg_targets = self._reset_target_shape(reg_targets, num_anchors)
cls_targets = self._reset_target_shape(cls_targets, num_anchors)
reg_weights = self._reset_target_shape(reg_weights, num_anchors)
cls_weights = self._reset_target_shape(cls_weights, num_anchors)
return cls_targets, cls_weights, reg_targets, reg_weights, match
def _reset_target_shape(self, target, num_anchors):
"""Sets the static shape of the target.
Args:
target: the target tensor. Its first dimension will be overwritten.
num_anchors: the number of anchors, which is used to override the target's
first dimension.
Returns:
A tensor with the shape info filled in.
"""
target_shape = target.get_shape().as_list()
target_shape[0] = num_anchors
target.set_shape(target_shape)
return target
def _create_regression_targets(self, anchors, groundtruth_boxes, match):
"""Returns a regression target for each anchor.
Args:
anchors: a BoxList representing N anchors
groundtruth_boxes: a BoxList representing M groundtruth_boxes
match: a matcher.Match object
Returns:
reg_targets: a float32 tensor with shape [N, box_code_dimension]
"""
matched_gt_boxes = match.gather_based_on_match(
groundtruth_boxes.get(),
unmatched_value=tf.zeros(4),
ignored_value=tf.zeros(4))
matched_gt_boxlist = box_list.BoxList(matched_gt_boxes)
if groundtruth_boxes.has_field(KEYPOINTS_FIELD_NAME):
groundtruth_keypoints = groundtruth_boxes.get_field(KEYPOINTS_FIELD_NAME)
matched_keypoints = match.gather_based_on_match(
groundtruth_keypoints,
unmatched_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]),
ignored_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]))
matched_gt_boxlist.add_field(KEYPOINTS_FIELD_NAME, matched_keypoints)
matched_reg_targets = self._box_coder.encode(matched_gt_boxlist, anchors)
match_results_shape = shape_utils.combined_static_and_dynamic_shape(
match.match_results)
# Zero out the unmatched and ignored regression targets.
unmatched_ignored_reg_targets = tf.tile(self._default_regression_target(),
[match_results_shape[0], 1])
matched_anchors_mask = match.matched_column_indicator()
# To broadcast matched_anchors_mask to the same shape as
# matched_reg_targets.
matched_anchors_mask = tf.tile(
tf.expand_dims(matched_anchors_mask, 1),
[1, tf.shape(matched_reg_targets)[1]])
reg_targets = tf.where(matched_anchors_mask, matched_reg_targets,
unmatched_ignored_reg_targets)
return reg_targets
def _default_regression_target(self):
"""Returns the default target for anchors to regress to.
Default regression targets are set to zero (though in
this implementation what these targets are set to should
not matter as the regression weight of any box set to
regress to the default target is zero).
Returns:
default_target: a float32 tensor with shape [1, box_code_dimension]
"""
return tf.constant([self._box_coder.code_size * [0]], tf.float32)
def _create_classification_targets(self, groundtruth_labels, match):
"""Create classification targets for each anchor.
Assign a classification target of for each anchor to the matching
groundtruth label that is provided by match. Anchors that are not matched
to anything are given the target self._unmatched_cls_target
Args:
groundtruth_labels: a tensor of shape [num_gt_boxes, d_1, ... d_k] with
labels for each of the ground_truth boxes. The subshape [d_1, ... d_k]
can be empty (corresponding to scalar labels).
match: a matcher.Match object that provides a matching between anchors and
groundtruth boxes.
Returns:
a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k], where the
subshape [d_1, ..., d_k] is compatible with groundtruth_labels which has
shape [num_gt_boxes, d_1, d_2, ... d_k].
"""
return match.gather_based_on_match(
groundtruth_labels,
unmatched_value=self._unmatched_cls_target,
ignored_value=self._unmatched_cls_target)
def _create_regression_weights(self, match, groundtruth_weights):
"""Set regression weight for each anchor.
Only positive anchors are set to contribute to the regression loss, so this
method returns a weight of 1 for every positive anchor and 0 for every
negative anchor.
Args:
match: a matcher.Match object that provides a matching between anchors and
groundtruth boxes.
groundtruth_weights: a float tensor of shape [M] indicating the weight to
assign to all anchors match to a particular groundtruth box.
Returns:
a float32 tensor with shape [num_anchors] representing regression weights.
"""
return match.gather_based_on_match(
groundtruth_weights, ignored_value=0., unmatched_value=0.)
def _create_classification_weights(self, match, groundtruth_weights):
"""Create classification weights for each anchor.
Positive (matched) anchors are associated with a weight of
positive_class_weight and negative (unmatched) anchors are associated with
a weight of negative_class_weight. When anchors are ignored, weights are set
to zero. By default, both positive/negative weights are set to 1.0,
but they can be adjusted to handle class imbalance (which is almost always
the case in object detection).
Args:
match: a matcher.Match object that provides a matching between anchors and
groundtruth boxes.
groundtruth_weights: a float tensor of shape [M] indicating the weight to
assign to all anchors match to a particular groundtruth box.
Returns:
a float32 tensor with shape [num_anchors] representing classification
weights.
"""
return match.gather_based_on_match(
groundtruth_weights,
ignored_value=0.,
unmatched_value=self._negative_class_weight)
def get_box_coder(self):
"""Get BoxCoder of this TargetAssigner.
Returns:
BoxCoder object.
"""
return self._box_coder
class OlnTargetAssigner(TargetAssigner):
"""Target assigner to compute classification and regression targets."""
def __init__(self,
similarity_calc,
matcher,
box_coder,
negative_class_weight=1.0,
unmatched_cls_target=None,
center_matcher=None):
"""Construct Object Detection Target Assigner.
Args:
similarity_calc: a RegionSimilarityCalculator
matcher: Matcher used to match groundtruth to anchors.
box_coder: BoxCoder used to encode matching groundtruth boxes with respect
to anchors.
negative_class_weight: classification weight to be associated to negative
anchors (default: 1.0). The weight must be in [0., 1.].
unmatched_cls_target: a float32 tensor with shape [d_1, d_2, ..., d_k]
which is consistent with the classification target for each anchor (and
can be empty for scalar targets). This shape must thus be compatible
with the groundtruth labels that are passed to the "assign" function
(which have shape [num_gt_boxes, d_1, d_2, ..., d_k]). If set to None,
unmatched_cls_target is set to be [0] for each anchor.
center_matcher: Matcher used to match groundtruth to anchors to sample and
assign the regression targets of centerness to each anchor.
Raises:
ValueError: if similarity_calc is not a RegionSimilarityCalculator or
if matcher is not a Matcher or if box_coder is not a BoxCoder
"""
super(OlnTargetAssigner, self).__init__(
similarity_calc=similarity_calc,
matcher=matcher,
box_coder=box_coder,
negative_class_weight=negative_class_weight,
unmatched_cls_target=unmatched_cls_target)
# centerness-matcher with independent sampling IoU threshold.
self._center_matcher = center_matcher
def assign(self,
anchors,
groundtruth_boxes,
groundtruth_labels=None,
groundtruth_weights=None,
**params):
"""Assign classification and regression targets to each anchor.
For a given set of anchors and groundtruth detections, match anchors
to groundtruth_boxes and assign classification and regression targets to
each anchor as well as weights based on the resulting match (specifying,
e.g., which anchors should not contribute to training loss).
Anchors that are not matched to anything are given a classification target
of self._unmatched_cls_target which can be specified via the constructor.
Args:
anchors: a BoxList representing N anchors
groundtruth_boxes: a BoxList representing M groundtruth boxes
groundtruth_labels: a tensor of shape [M, d_1, ... d_k] with labels for
each of the ground_truth boxes. The subshape [d_1, ... d_k] can be empty
(corresponding to scalar inputs). When set to None, groundtruth_labels
assumes a binary problem where all ground_truth boxes get a positive
label (of 1).
groundtruth_weights: a float tensor of shape [M] indicating the weight to
assign to all anchors match to a particular groundtruth box. The weights
must be in [0., 1.]. If None, all weights are set to 1.
**params: Additional keyword arguments for specific implementations of the
Matcher.
Returns:
cls_targets: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k],
where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels
which has shape [num_gt_boxes, d_1, d_2, ... d_k].
cls_weights: a float32 tensor with shape [num_anchors]
reg_targets: a float32 tensor with shape [num_anchors, box_code_dimension]
reg_weights: a float32 tensor with shape [num_anchors]
match: a matcher.Match object encoding the match between anchors and
groundtruth boxes, with rows corresponding to groundtruth boxes
and columns corresponding to anchors.
matched_gt_boxlist: a BoxList object with data of float32 tensor with
shape [num_anchors, box_dimension] which encodes the coordinates of the
matched groundtruth boxes.
matched_anchors_mask: a Bool tensor with shape [num_anchors] which
indicates whether an anchor is matched or not.
center_matched_gt_boxlist: a BoxList object with data of float32 tensor
with shape [num_anchors, box_dimension] which encodes the coordinates of
the groundtruth boxes matched for centerness target assignment.
center_matched_anchors_mask: a Boolean tensor with shape [num_anchors]
which indicates whether an anchor is matched or not for centerness
target assignment.
matched_ious: a float32 tensor with shape [num_anchors] which encodes the
ious between each anchor and the matched groundtruth boxes.
Raises:
ValueError: if anchors or groundtruth_boxes are not of type
box_list.BoxList
"""
if not isinstance(anchors, box_list.BoxList):
raise ValueError('anchors must be an BoxList')
if not isinstance(groundtruth_boxes, box_list.BoxList):
raise ValueError('groundtruth_boxes must be an BoxList')
if groundtruth_labels is None:
groundtruth_labels = tf.ones(
tf.expand_dims(groundtruth_boxes.num_boxes(), 0))
groundtruth_labels = tf.expand_dims(groundtruth_labels, -1)
unmatched_shape_assert = shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[1:],
shape_utils.combined_static_and_dynamic_shape(
self._unmatched_cls_target))
labels_and_box_shapes_assert = shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[:1],
shape_utils.combined_static_and_dynamic_shape(
groundtruth_boxes.get())[:1])
if groundtruth_weights is None:
num_gt_boxes = groundtruth_boxes.num_boxes_static()
if not num_gt_boxes:
num_gt_boxes = groundtruth_boxes.num_boxes()
groundtruth_weights = tf.ones([num_gt_boxes], dtype=tf.float32)
with tf.control_dependencies(
[unmatched_shape_assert, labels_and_box_shapes_assert]):
match_quality_matrix = self._similarity_calc(
groundtruth_boxes.get(), anchors.get())
match = self._matcher.match(match_quality_matrix, **params)
reg_targets, matched_gt_boxlist, matched_anchors_mask = (
self._create_regression_targets(anchors,
groundtruth_boxes,
match))
cls_targets = self._create_classification_targets(groundtruth_labels,
match)
reg_weights = self._create_regression_weights(match, groundtruth_weights)
cls_weights = self._create_classification_weights(match,
groundtruth_weights)
# Match for creation of centerness regression targets.
if self._center_matcher is not None:
center_match = self._center_matcher.match(
match_quality_matrix, **params)
center_matched_gt_boxes = center_match.gather_based_on_match(
groundtruth_boxes.get(),
unmatched_value=tf.zeros(4),
ignored_value=tf.zeros(4))
center_matched_gt_boxlist = box_list.BoxList(center_matched_gt_boxes)
center_matched_anchors_mask = center_match.matched_column_indicator()
num_anchors = anchors.num_boxes_static()
if num_anchors is not None:
reg_targets = self._reset_target_shape(reg_targets, num_anchors)
cls_targets = self._reset_target_shape(cls_targets, num_anchors)
reg_weights = self._reset_target_shape(reg_weights, num_anchors)
cls_weights = self._reset_target_shape(cls_weights, num_anchors)
if self._center_matcher is not None:
matched_ious = tf.reduce_max(match_quality_matrix, 0)
return (cls_targets, cls_weights, reg_targets, reg_weights, match,
matched_gt_boxlist, matched_anchors_mask,
center_matched_gt_boxlist, center_matched_anchors_mask,
matched_ious)
else:
return (cls_targets, cls_weights, reg_targets, reg_weights, match)
def _create_regression_targets(self, anchors, groundtruth_boxes, match):
"""Returns a regression target for each anchor.
Args:
anchors: a BoxList representing N anchors
groundtruth_boxes: a BoxList representing M groundtruth_boxes
match: a matcher.Match object
Returns:
reg_targets: a float32 tensor with shape [N, box_code_dimension]
"""
matched_gt_boxes = match.gather_based_on_match(
groundtruth_boxes.get(),
unmatched_value=tf.zeros(4),
ignored_value=tf.zeros(4))
matched_gt_boxlist = box_list.BoxList(matched_gt_boxes)
if groundtruth_boxes.has_field(KEYPOINTS_FIELD_NAME):
groundtruth_keypoints = groundtruth_boxes.get_field(KEYPOINTS_FIELD_NAME)
matched_keypoints = match.gather_based_on_match(
groundtruth_keypoints,
unmatched_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]),
ignored_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]))
matched_gt_boxlist.add_field(KEYPOINTS_FIELD_NAME, matched_keypoints)
matched_reg_targets = self._box_coder.encode(matched_gt_boxlist, anchors)
match_results_shape = shape_utils.combined_static_and_dynamic_shape(
match.match_results)
# Zero out the unmatched and ignored regression targets.
unmatched_ignored_reg_targets = tf.tile(self._default_regression_target(),
[match_results_shape[0], 1])
matched_anchors_mask = match.matched_column_indicator()
# To broadcast matched_anchors_mask to the same shape as
# matched_reg_targets.
matched_anchors_mask_tiled = tf.tile(
tf.expand_dims(matched_anchors_mask, 1),
[1, tf.shape(matched_reg_targets)[1]])
reg_targets = tf.where(matched_anchors_mask_tiled,
matched_reg_targets,
unmatched_ignored_reg_targets)
return reg_targets, matched_gt_boxlist, matched_anchors_mask
|