File size: 24,208 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Base target assigner module.

The job of a TargetAssigner is, for a given set of anchors (bounding boxes) and
groundtruth detections (bounding boxes), to assign classification and regression
targets to each anchor as well as weights to each anchor (specifying, e.g.,
which anchors should not contribute to training loss).

It assigns classification/regression targets by performing the following steps:
1) Computing pairwise similarity between anchors and groundtruth boxes using a
  provided RegionSimilarity Calculator
2) Computing a matching based on the similarity matrix using a provided Matcher
3) Assigning regression targets based on the matching and a provided BoxCoder
4) Assigning classification targets based on the matching and groundtruth labels

Note that TargetAssigners only operate on detections from a single
image at a time, so any logic for applying a TargetAssigner to multiple
images must be handled externally.
"""

import tensorflow as tf, tf_keras

from official.vision.utils.object_detection import box_list
from official.vision.utils.object_detection import shape_utils

KEYPOINTS_FIELD_NAME = 'keypoints'


class TargetAssigner(object):
  """Target assigner to compute classification and regression targets."""

  def __init__(self,
               similarity_calc,
               matcher,
               box_coder,
               negative_class_weight=1.0,
               unmatched_cls_target=None):
    """Construct Object Detection Target Assigner.

    Args:
      similarity_calc: a RegionSimilarityCalculator
      matcher: Matcher used to match groundtruth to anchors.
      box_coder: BoxCoder used to encode matching groundtruth boxes with respect
        to anchors.
      negative_class_weight: classification weight to be associated to negative
        anchors (default: 1.0). The weight must be in [0., 1.].
      unmatched_cls_target: a float32 tensor with shape [d_1, d_2, ..., d_k]
        which is consistent with the classification target for each anchor (and
        can be empty for scalar targets).  This shape must thus be compatible
        with the groundtruth labels that are passed to the "assign" function
        (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]). If set to None,
        unmatched_cls_target is set to be [0] for each anchor.

    Raises:
      ValueError: if similarity_calc is not a RegionSimilarityCalculator or
        if matcher is not a Matcher or if box_coder is not a BoxCoder
    """
    self._similarity_calc = similarity_calc
    self._matcher = matcher
    self._box_coder = box_coder
    self._negative_class_weight = negative_class_weight
    if unmatched_cls_target is None:
      self._unmatched_cls_target = tf.constant([0], tf.float32)
    else:
      self._unmatched_cls_target = unmatched_cls_target

  @property
  def box_coder(self):
    return self._box_coder

  def assign(self,
             anchors,
             groundtruth_boxes,
             groundtruth_labels=None,
             groundtruth_weights=None,
             **params):
    """Assign classification and regression targets to each anchor.

    For a given set of anchors and groundtruth detections, match anchors
    to groundtruth_boxes and assign classification and regression targets to
    each anchor as well as weights based on the resulting match (specifying,
    e.g., which anchors should not contribute to training loss).

    Anchors that are not matched to anything are given a classification target
    of self._unmatched_cls_target which can be specified via the constructor.

    Args:
      anchors: a BoxList representing N anchors
      groundtruth_boxes: a BoxList representing M groundtruth boxes
      groundtruth_labels:  a tensor of shape [M, d_1, ... d_k] with labels for
        each of the ground_truth boxes. The subshape [d_1, ... d_k] can be empty
        (corresponding to scalar inputs).  When set to None, groundtruth_labels
        assumes a binary problem where all ground_truth boxes get a positive
        label (of 1).
      groundtruth_weights: a float tensor of shape [M] indicating the weight to
        assign to all anchors match to a particular groundtruth box. The weights
        must be in [0., 1.]. If None, all weights are set to 1.
      **params: Additional keyword arguments for specific implementations of the
        Matcher.

    Returns:
      cls_targets: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k],
        where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels
        which has shape [num_gt_boxes, d_1, d_2, ... d_k].
      cls_weights: a float32 tensor with shape [num_anchors]
      reg_targets: a float32 tensor with shape [num_anchors, box_code_dimension]
      reg_weights: a float32 tensor with shape [num_anchors]
      match: a matcher.Match object encoding the match between anchors and
        groundtruth boxes, with rows corresponding to groundtruth boxes
        and columns corresponding to anchors.

    Raises:
      ValueError: if anchors or groundtruth_boxes are not of type
        box_list.BoxList
    """
    if not isinstance(anchors, box_list.BoxList):
      raise ValueError('anchors must be an BoxList')
    if not isinstance(groundtruth_boxes, box_list.BoxList):
      raise ValueError('groundtruth_boxes must be an BoxList')

    if groundtruth_labels is None:
      groundtruth_labels = tf.ones(
          tf.expand_dims(groundtruth_boxes.num_boxes(), 0))
      groundtruth_labels = tf.expand_dims(groundtruth_labels, -1)
    unmatched_shape_assert = shape_utils.assert_shape_equal(
        shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[1:],
        shape_utils.combined_static_and_dynamic_shape(
            self._unmatched_cls_target))
    labels_and_box_shapes_assert = shape_utils.assert_shape_equal(
        shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[:1],
        shape_utils.combined_static_and_dynamic_shape(
            groundtruth_boxes.get())[:1])

    if groundtruth_weights is None:
      num_gt_boxes = groundtruth_boxes.num_boxes_static()
      if not num_gt_boxes:
        num_gt_boxes = groundtruth_boxes.num_boxes()
      groundtruth_weights = tf.ones([num_gt_boxes], dtype=tf.float32)
    with tf.control_dependencies(
        [unmatched_shape_assert, labels_and_box_shapes_assert]):
      match_quality_matrix = self._similarity_calc(
          groundtruth_boxes.get(), anchors.get())
      match = self._matcher.match(match_quality_matrix, **params)
      reg_targets = self._create_regression_targets(anchors, groundtruth_boxes,
                                                    match)
      cls_targets = self._create_classification_targets(groundtruth_labels,
                                                        match)
      reg_weights = self._create_regression_weights(match, groundtruth_weights)
      cls_weights = self._create_classification_weights(match,
                                                        groundtruth_weights)

    num_anchors = anchors.num_boxes_static()
    if num_anchors is not None:
      reg_targets = self._reset_target_shape(reg_targets, num_anchors)
      cls_targets = self._reset_target_shape(cls_targets, num_anchors)
      reg_weights = self._reset_target_shape(reg_weights, num_anchors)
      cls_weights = self._reset_target_shape(cls_weights, num_anchors)

    return cls_targets, cls_weights, reg_targets, reg_weights, match

  def _reset_target_shape(self, target, num_anchors):
    """Sets the static shape of the target.

    Args:
      target: the target tensor. Its first dimension will be overwritten.
      num_anchors: the number of anchors, which is used to override the target's
        first dimension.

    Returns:
      A tensor with the shape info filled in.
    """
    target_shape = target.get_shape().as_list()
    target_shape[0] = num_anchors
    target.set_shape(target_shape)
    return target

  def _create_regression_targets(self, anchors, groundtruth_boxes, match):
    """Returns a regression target for each anchor.

    Args:
      anchors: a BoxList representing N anchors
      groundtruth_boxes: a BoxList representing M groundtruth_boxes
      match: a matcher.Match object

    Returns:
      reg_targets: a float32 tensor with shape [N, box_code_dimension]
    """
    matched_gt_boxes = match.gather_based_on_match(
        groundtruth_boxes.get(),
        unmatched_value=tf.zeros(4),
        ignored_value=tf.zeros(4))
    matched_gt_boxlist = box_list.BoxList(matched_gt_boxes)
    if groundtruth_boxes.has_field(KEYPOINTS_FIELD_NAME):
      groundtruth_keypoints = groundtruth_boxes.get_field(KEYPOINTS_FIELD_NAME)
      matched_keypoints = match.gather_based_on_match(
          groundtruth_keypoints,
          unmatched_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]),
          ignored_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]))
      matched_gt_boxlist.add_field(KEYPOINTS_FIELD_NAME, matched_keypoints)
    matched_reg_targets = self._box_coder.encode(matched_gt_boxlist, anchors)
    match_results_shape = shape_utils.combined_static_and_dynamic_shape(
        match.match_results)

    # Zero out the unmatched and ignored regression targets.
    unmatched_ignored_reg_targets = tf.tile(self._default_regression_target(),
                                            [match_results_shape[0], 1])
    matched_anchors_mask = match.matched_column_indicator()
    # To broadcast matched_anchors_mask to the same shape as
    # matched_reg_targets.
    matched_anchors_mask = tf.tile(
        tf.expand_dims(matched_anchors_mask, 1),
        [1, tf.shape(matched_reg_targets)[1]])
    reg_targets = tf.where(matched_anchors_mask, matched_reg_targets,
                           unmatched_ignored_reg_targets)
    return reg_targets

  def _default_regression_target(self):
    """Returns the default target for anchors to regress to.

    Default regression targets are set to zero (though in
    this implementation what these targets are set to should
    not matter as the regression weight of any box set to
    regress to the default target is zero).

    Returns:
      default_target: a float32 tensor with shape [1, box_code_dimension]
    """
    return tf.constant([self._box_coder.code_size * [0]], tf.float32)

  def _create_classification_targets(self, groundtruth_labels, match):
    """Create classification targets for each anchor.

    Assign a classification target of for each anchor to the matching
    groundtruth label that is provided by match.  Anchors that are not matched
    to anything are given the target self._unmatched_cls_target

    Args:
      groundtruth_labels:  a tensor of shape [num_gt_boxes, d_1, ... d_k] with
        labels for each of the ground_truth boxes. The subshape [d_1, ... d_k]
        can be empty (corresponding to scalar labels).
      match: a matcher.Match object that provides a matching between anchors and
        groundtruth boxes.

    Returns:
      a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k], where the
      subshape [d_1, ..., d_k] is compatible with groundtruth_labels which has
      shape [num_gt_boxes, d_1, d_2, ... d_k].
    """
    return match.gather_based_on_match(
        groundtruth_labels,
        unmatched_value=self._unmatched_cls_target,
        ignored_value=self._unmatched_cls_target)

  def _create_regression_weights(self, match, groundtruth_weights):
    """Set regression weight for each anchor.

    Only positive anchors are set to contribute to the regression loss, so this
    method returns a weight of 1 for every positive anchor and 0 for every
    negative anchor.

    Args:
      match: a matcher.Match object that provides a matching between anchors and
        groundtruth boxes.
      groundtruth_weights: a float tensor of shape [M] indicating the weight to
        assign to all anchors match to a particular groundtruth box.

    Returns:
      a float32 tensor with shape [num_anchors] representing regression weights.
    """
    return match.gather_based_on_match(
        groundtruth_weights, ignored_value=0., unmatched_value=0.)

  def _create_classification_weights(self, match, groundtruth_weights):
    """Create classification weights for each anchor.

    Positive (matched) anchors are associated with a weight of
    positive_class_weight and negative (unmatched) anchors are associated with
    a weight of negative_class_weight. When anchors are ignored, weights are set
    to zero. By default, both positive/negative weights are set to 1.0,
    but they can be adjusted to handle class imbalance (which is almost always
    the case in object detection).

    Args:
      match: a matcher.Match object that provides a matching between anchors and
        groundtruth boxes.
      groundtruth_weights: a float tensor of shape [M] indicating the weight to
        assign to all anchors match to a particular groundtruth box.

    Returns:
      a float32 tensor with shape [num_anchors] representing classification
      weights.
    """
    return match.gather_based_on_match(
        groundtruth_weights,
        ignored_value=0.,
        unmatched_value=self._negative_class_weight)

  def get_box_coder(self):
    """Get BoxCoder of this TargetAssigner.

    Returns:
      BoxCoder object.
    """
    return self._box_coder


class OlnTargetAssigner(TargetAssigner):
  """Target assigner to compute classification and regression targets."""

  def __init__(self,
               similarity_calc,
               matcher,
               box_coder,
               negative_class_weight=1.0,
               unmatched_cls_target=None,
               center_matcher=None):
    """Construct Object Detection Target Assigner.

    Args:
      similarity_calc: a RegionSimilarityCalculator
      matcher: Matcher used to match groundtruth to anchors.
      box_coder: BoxCoder used to encode matching groundtruth boxes with respect
        to anchors.
      negative_class_weight: classification weight to be associated to negative
        anchors (default: 1.0). The weight must be in [0., 1.].
      unmatched_cls_target: a float32 tensor with shape [d_1, d_2, ..., d_k]
        which is consistent with the classification target for each anchor (and
        can be empty for scalar targets).  This shape must thus be compatible
        with the groundtruth labels that are passed to the "assign" function
        (which have shape [num_gt_boxes, d_1, d_2, ..., d_k]). If set to None,
        unmatched_cls_target is set to be [0] for each anchor.
      center_matcher: Matcher used to match groundtruth to anchors to sample and
        assign the regression targets of centerness to each anchor.

    Raises:
      ValueError: if similarity_calc is not a RegionSimilarityCalculator or
        if matcher is not a Matcher or if box_coder is not a BoxCoder
    """
    super(OlnTargetAssigner, self).__init__(
        similarity_calc=similarity_calc,
        matcher=matcher,
        box_coder=box_coder,
        negative_class_weight=negative_class_weight,
        unmatched_cls_target=unmatched_cls_target)

    # centerness-matcher with independent sampling IoU threshold.
    self._center_matcher = center_matcher

  def assign(self,
             anchors,
             groundtruth_boxes,
             groundtruth_labels=None,
             groundtruth_weights=None,
             **params):
    """Assign classification and regression targets to each anchor.

    For a given set of anchors and groundtruth detections, match anchors
    to groundtruth_boxes and assign classification and regression targets to
    each anchor as well as weights based on the resulting match (specifying,
    e.g., which anchors should not contribute to training loss).

    Anchors that are not matched to anything are given a classification target
    of self._unmatched_cls_target which can be specified via the constructor.

    Args:
      anchors: a BoxList representing N anchors
      groundtruth_boxes: a BoxList representing M groundtruth boxes
      groundtruth_labels:  a tensor of shape [M, d_1, ... d_k] with labels for
        each of the ground_truth boxes. The subshape [d_1, ... d_k] can be empty
        (corresponding to scalar inputs).  When set to None, groundtruth_labels
        assumes a binary problem where all ground_truth boxes get a positive
        label (of 1).
      groundtruth_weights: a float tensor of shape [M] indicating the weight to
        assign to all anchors match to a particular groundtruth box. The weights
        must be in [0., 1.]. If None, all weights are set to 1.
      **params: Additional keyword arguments for specific implementations of the
        Matcher.

    Returns:
      cls_targets: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k],
        where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels
        which has shape [num_gt_boxes, d_1, d_2, ... d_k].
      cls_weights: a float32 tensor with shape [num_anchors]
      reg_targets: a float32 tensor with shape [num_anchors, box_code_dimension]
      reg_weights: a float32 tensor with shape [num_anchors]
      match: a matcher.Match object encoding the match between anchors and
        groundtruth boxes, with rows corresponding to groundtruth boxes
        and columns corresponding to anchors.
      matched_gt_boxlist: a BoxList object with data of float32 tensor with
        shape [num_anchors, box_dimension] which encodes the coordinates of the
        matched groundtruth boxes.
      matched_anchors_mask: a Bool tensor with shape [num_anchors] which
        indicates whether an anchor is matched or not.
      center_matched_gt_boxlist: a BoxList object with data of float32 tensor
        with shape [num_anchors, box_dimension] which encodes the coordinates of
        the groundtruth boxes matched for centerness target assignment.
      center_matched_anchors_mask: a Boolean tensor with shape [num_anchors]
        which indicates whether an anchor is matched or not for centerness
        target assignment.
      matched_ious: a float32 tensor with shape [num_anchors] which encodes the
        ious between each anchor and the matched groundtruth boxes.

    Raises:
      ValueError: if anchors or groundtruth_boxes are not of type
        box_list.BoxList
    """
    if not isinstance(anchors, box_list.BoxList):
      raise ValueError('anchors must be an BoxList')
    if not isinstance(groundtruth_boxes, box_list.BoxList):
      raise ValueError('groundtruth_boxes must be an BoxList')

    if groundtruth_labels is None:
      groundtruth_labels = tf.ones(
          tf.expand_dims(groundtruth_boxes.num_boxes(), 0))
      groundtruth_labels = tf.expand_dims(groundtruth_labels, -1)
    unmatched_shape_assert = shape_utils.assert_shape_equal(
        shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[1:],
        shape_utils.combined_static_and_dynamic_shape(
            self._unmatched_cls_target))
    labels_and_box_shapes_assert = shape_utils.assert_shape_equal(
        shape_utils.combined_static_and_dynamic_shape(groundtruth_labels)[:1],
        shape_utils.combined_static_and_dynamic_shape(
            groundtruth_boxes.get())[:1])

    if groundtruth_weights is None:
      num_gt_boxes = groundtruth_boxes.num_boxes_static()
      if not num_gt_boxes:
        num_gt_boxes = groundtruth_boxes.num_boxes()
      groundtruth_weights = tf.ones([num_gt_boxes], dtype=tf.float32)
    with tf.control_dependencies(
        [unmatched_shape_assert, labels_and_box_shapes_assert]):
      match_quality_matrix = self._similarity_calc(
          groundtruth_boxes.get(), anchors.get())
      match = self._matcher.match(match_quality_matrix, **params)
      reg_targets, matched_gt_boxlist, matched_anchors_mask = (
          self._create_regression_targets(anchors,
                                          groundtruth_boxes,
                                          match))
      cls_targets = self._create_classification_targets(groundtruth_labels,
                                                        match)
      reg_weights = self._create_regression_weights(match, groundtruth_weights)
      cls_weights = self._create_classification_weights(match,
                                                        groundtruth_weights)
      # Match for creation of centerness regression targets.
      if self._center_matcher is not None:
        center_match = self._center_matcher.match(
            match_quality_matrix, **params)
        center_matched_gt_boxes = center_match.gather_based_on_match(
            groundtruth_boxes.get(),
            unmatched_value=tf.zeros(4),
            ignored_value=tf.zeros(4))
        center_matched_gt_boxlist = box_list.BoxList(center_matched_gt_boxes)
        center_matched_anchors_mask = center_match.matched_column_indicator()

    num_anchors = anchors.num_boxes_static()
    if num_anchors is not None:
      reg_targets = self._reset_target_shape(reg_targets, num_anchors)
      cls_targets = self._reset_target_shape(cls_targets, num_anchors)
      reg_weights = self._reset_target_shape(reg_weights, num_anchors)
      cls_weights = self._reset_target_shape(cls_weights, num_anchors)

    if self._center_matcher is not None:
      matched_ious = tf.reduce_max(match_quality_matrix, 0)
      return (cls_targets, cls_weights, reg_targets, reg_weights, match,
              matched_gt_boxlist, matched_anchors_mask,
              center_matched_gt_boxlist, center_matched_anchors_mask,
              matched_ious)
    else:
      return (cls_targets, cls_weights, reg_targets, reg_weights, match)

  def _create_regression_targets(self, anchors, groundtruth_boxes, match):
    """Returns a regression target for each anchor.

    Args:
      anchors: a BoxList representing N anchors
      groundtruth_boxes: a BoxList representing M groundtruth_boxes
      match: a matcher.Match object

    Returns:
      reg_targets: a float32 tensor with shape [N, box_code_dimension]
    """
    matched_gt_boxes = match.gather_based_on_match(
        groundtruth_boxes.get(),
        unmatched_value=tf.zeros(4),
        ignored_value=tf.zeros(4))
    matched_gt_boxlist = box_list.BoxList(matched_gt_boxes)
    if groundtruth_boxes.has_field(KEYPOINTS_FIELD_NAME):
      groundtruth_keypoints = groundtruth_boxes.get_field(KEYPOINTS_FIELD_NAME)
      matched_keypoints = match.gather_based_on_match(
          groundtruth_keypoints,
          unmatched_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]),
          ignored_value=tf.zeros(groundtruth_keypoints.get_shape()[1:]))
      matched_gt_boxlist.add_field(KEYPOINTS_FIELD_NAME, matched_keypoints)
    matched_reg_targets = self._box_coder.encode(matched_gt_boxlist, anchors)
    match_results_shape = shape_utils.combined_static_and_dynamic_shape(
        match.match_results)

    # Zero out the unmatched and ignored regression targets.
    unmatched_ignored_reg_targets = tf.tile(self._default_regression_target(),
                                            [match_results_shape[0], 1])
    matched_anchors_mask = match.matched_column_indicator()
    # To broadcast matched_anchors_mask to the same shape as
    # matched_reg_targets.
    matched_anchors_mask_tiled = tf.tile(
        tf.expand_dims(matched_anchors_mask, 1),
        [1, tf.shape(matched_reg_targets)[1]])
    reg_targets = tf.where(matched_anchors_mask_tiled,
                           matched_reg_targets,
                           unmatched_ignored_reg_targets)
    return reg_targets, matched_gt_boxlist, matched_anchors_mask