Spaces:
Runtime error
Runtime error
File size: 4,394 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for ops."""
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.utils.object_detection import ops
class OpsTest(tf.test.TestCase):
def test_merge_boxes_with_multiple_labels(self):
boxes = tf.constant(
[
[0.25, 0.25, 0.75, 0.75],
[0.0, 0.0, 0.5, 0.75],
[0.25, 0.25, 0.75, 0.75],
],
dtype=tf.float32,
)
class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
num_classes = 5
merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
ops.merge_boxes_with_multiple_labels(
boxes, class_indices, class_confidences, num_classes
)
)
expected_merged_boxes = np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32
)
expected_merged_classes = np.array(
[[1, 0, 1, 0, 0], [0, 0, 0, 0, 1]], dtype=np.int32
)
expected_merged_confidences = np.array(
[[0.8, 0, 0.1, 0, 0], [0, 0, 0, 0, 0.2]], dtype=np.float32
)
expected_merged_box_indices = np.array([0, 1], dtype=np.int32)
self.assertAllClose(merged_boxes.numpy(), expected_merged_boxes)
self.assertAllClose(merged_classes.numpy(), expected_merged_classes)
self.assertAllClose(merged_confidences.numpy(), expected_merged_confidences)
self.assertAllClose(merged_box_indices.numpy(), expected_merged_box_indices)
def test_merge_boxes_with_multiple_labels_corner_case(self):
boxes = tf.constant(
[
[0, 0, 1, 1],
[0, 1, 1, 1],
[1, 0, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 0, 1, 1],
[0, 1, 1, 1],
[0, 0, 1, 1],
],
dtype=tf.float32,
)
class_indices = tf.constant([0, 1, 2, 3, 2, 1, 0, 3], dtype=tf.int32)
class_confidences = tf.constant(
[0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6], dtype=tf.float32
)
num_classes = 4
merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
ops.merge_boxes_with_multiple_labels(
boxes, class_indices, class_confidences, num_classes
)
)
expected_merged_boxes = np.array(
[[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]],
dtype=np.float32,
)
expected_merged_classes = np.array(
[[1, 0, 0, 1], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]], dtype=np.int32
)
expected_merged_confidences = np.array(
[
[0.1, 0, 0, 0.6],
[0.4, 0.9, 0, 0],
[0, 0.7, 0.2, 0],
[0, 0, 0.3, 0.8],
],
dtype=np.float32,
)
expected_merged_box_indices = np.array([0, 1, 2, 3], dtype=np.int32)
self.assertAllClose(merged_boxes.numpy(), expected_merged_boxes)
self.assertAllClose(merged_classes.numpy(), expected_merged_classes)
self.assertAllClose(merged_confidences.numpy(), expected_merged_confidences)
self.assertAllClose(merged_box_indices.numpy(), expected_merged_box_indices)
def test_merge_boxes_with_empty_inputs(self):
boxes = tf.zeros([0, 4], dtype=tf.float32)
class_indices = tf.constant([], dtype=tf.int32)
class_confidences = tf.constant([], dtype=tf.float32)
num_classes = 5
merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
ops.merge_boxes_with_multiple_labels(
boxes, class_indices, class_confidences, num_classes
)
)
self.assertAllEqual(merged_boxes.shape, [0, 4])
self.assertAllEqual(merged_classes.shape, [0, 5])
self.assertAllEqual(merged_confidences.shape, [0, 5])
self.assertAllEqual(merged_box_indices.shape, [0])
if __name__ == '__main__':
tf.test.main()
|