File size: 18,955 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Library for running BERT family models on SQuAD 1.1/2.0 in TF 2.x."""

import collections
import json
import os

from absl import flags
from absl import logging
import tensorflow as tf, tf_keras
from official.legacy.bert import bert_models
from official.legacy.bert import common_flags
from official.legacy.bert import input_pipeline
from official.legacy.bert import model_saving_utils
from official.legacy.bert import model_training_utils
from official.modeling import performance
from official.nlp import optimization
from official.nlp.data import squad_lib_sp
from official.nlp.tools import squad_evaluate_v1_1
from official.nlp.tools import squad_evaluate_v2_0
from official.utils.misc import keras_utils


def define_common_squad_flags():
  """Defines common flags used by SQuAD tasks."""
  flags.DEFINE_enum(
      'mode', 'train_and_eval', [
          'train_and_eval', 'train_and_predict', 'train', 'eval', 'predict',
          'export_only'
      ], 'One of {"train_and_eval", "train_and_predict", '
      '"train", "eval", "predict", "export_only"}. '
      '`train_and_eval`: train & predict to json files & compute eval metrics. '
      '`train_and_predict`: train & predict to json files. '
      '`train`: only trains the model. '
      '`eval`: predict answers from squad json file & compute eval metrics. '
      '`predict`: predict answers from the squad json file. '
      '`export_only`: will take the latest checkpoint inside '
      'model_dir and export a `SavedModel`.')
  flags.DEFINE_string('train_data_path', '',
                      'Training data path with train tfrecords.')
  flags.DEFINE_string(
      'input_meta_data_path', None,
      'Path to file that contains meta data about input '
      'to be used for training and evaluation.')
  # Model training specific flags.
  flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
  # Predict processing related.
  flags.DEFINE_string(
      'predict_file', None, 'SQuAD prediction json file path. '
      '`predict` mode supports multiple files: one can use '
      'wildcard to specify multiple files and it can also be '
      'multiple file patterns separated by comma. Note that '
      '`eval` mode only supports a single predict file.')
  flags.DEFINE_bool(
      'do_lower_case', True,
      'Whether to lower case the input text. Should be True for uncased '
      'models and False for cased models.')
  flags.DEFINE_float(
      'null_score_diff_threshold', 0.0,
      'If null_score - best_non_null is greater than the threshold, '
      'predict null. This is only used for SQuAD v2.')
  flags.DEFINE_bool(
      'verbose_logging', False,
      'If true, all of the warnings related to data processing will be '
      'printed. A number of warnings are expected for a normal SQuAD '
      'evaluation.')
  flags.DEFINE_integer('predict_batch_size', 8,
                       'Total batch size for prediction.')
  flags.DEFINE_integer(
      'n_best_size', 20,
      'The total number of n-best predictions to generate in the '
      'nbest_predictions.json output file.')
  flags.DEFINE_integer(
      'max_answer_length', 30,
      'The maximum length of an answer that can be generated. This is needed '
      'because the start and end predictions are not conditioned on one '
      'another.')

  common_flags.define_common_bert_flags()


FLAGS = flags.FLAGS


def squad_loss_fn(start_positions, end_positions, start_logits, end_logits):
  """Returns sparse categorical crossentropy for start/end logits."""
  start_loss = tf_keras.losses.sparse_categorical_crossentropy(
      start_positions, start_logits, from_logits=True)
  end_loss = tf_keras.losses.sparse_categorical_crossentropy(
      end_positions, end_logits, from_logits=True)

  total_loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
  return total_loss


def get_loss_fn():
  """Gets a loss function for squad task."""

  def _loss_fn(labels, model_outputs):
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    start_logits, end_logits = model_outputs
    return squad_loss_fn(start_positions, end_positions, start_logits,
                         end_logits)

  return _loss_fn


RawResult = collections.namedtuple('RawResult',
                                   ['unique_id', 'start_logits', 'end_logits'])


def get_raw_results(predictions):
  """Converts multi-replica predictions to RawResult."""
  for unique_ids, start_logits, end_logits in zip(predictions['unique_ids'],
                                                  predictions['start_logits'],
                                                  predictions['end_logits']):
    for values in zip(unique_ids.numpy(), start_logits.numpy(),
                      end_logits.numpy()):
      yield RawResult(
          unique_id=values[0],
          start_logits=values[1].tolist(),
          end_logits=values[2].tolist())


def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
                   is_training):
  """Gets a closure to create a dataset.."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_squad_dataset(
        input_file_pattern,
        max_seq_length,
        batch_size,
        is_training=is_training,
        input_pipeline_context=ctx)
    return dataset

  return _dataset_fn


def get_squad_model_to_predict(strategy, bert_config, checkpoint_path,
                               input_meta_data):
  """Gets a squad model to make predictions."""
  with strategy.scope():
    # Prediction always uses float32, even if training uses mixed precision.
    tf_keras.mixed_precision.set_global_policy('float32')
    squad_model, _ = bert_models.squad_model(
        bert_config,
        input_meta_data['max_seq_length'],
        hub_module_url=FLAGS.hub_module_url)

  if checkpoint_path is None:
    checkpoint_path = tf.train.latest_checkpoint(FLAGS.model_dir)
  logging.info('Restoring checkpoints from %s', checkpoint_path)
  checkpoint = tf.train.Checkpoint(model=squad_model)
  checkpoint.restore(checkpoint_path).expect_partial()
  return squad_model


def predict_squad_customized(strategy, input_meta_data, predict_tfrecord_path,
                             num_steps, squad_model):
  """Make predictions using a Bert-based squad model."""
  predict_dataset_fn = get_dataset_fn(
      predict_tfrecord_path,
      input_meta_data['max_seq_length'],
      FLAGS.predict_batch_size,
      is_training=False)
  predict_iterator = iter(
      strategy.distribute_datasets_from_function(predict_dataset_fn))

  @tf.function
  def predict_step(iterator):
    """Predicts on distributed devices."""

    def _replicated_step(inputs):
      """Replicated prediction calculation."""
      x, _ = inputs
      unique_ids = x.pop('unique_ids')
      start_logits, end_logits = squad_model(x, training=False)
      return dict(
          unique_ids=unique_ids,
          start_logits=start_logits,
          end_logits=end_logits)

    outputs = strategy.run(_replicated_step, args=(next(iterator),))
    return tf.nest.map_structure(strategy.experimental_local_results, outputs)

  all_results = []
  for _ in range(num_steps):
    predictions = predict_step(predict_iterator)
    for result in get_raw_results(predictions):
      all_results.append(result)
    if len(all_results) % 100 == 0:
      logging.info('Made predictions for %d records.', len(all_results))
  return all_results


def train_squad(strategy,
                input_meta_data,
                bert_config,
                custom_callbacks=None,
                run_eagerly=False,
                init_checkpoint=None,
                sub_model_export_name=None):
  """Run bert squad training."""
  if strategy:
    logging.info('Training using customized training loop with distribution'
                 ' strategy.')
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_session_config(FLAGS.enable_xla)
  performance.set_mixed_precision_policy(common_flags.dtype())

  epochs = FLAGS.num_train_epochs
  num_train_examples = input_meta_data['train_data_size']
  max_seq_length = input_meta_data['max_seq_length']
  steps_per_epoch = int(num_train_examples / FLAGS.train_batch_size)
  warmup_steps = int(epochs * num_train_examples * 0.1 / FLAGS.train_batch_size)
  train_input_fn = get_dataset_fn(
      FLAGS.train_data_path,
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)

  def _get_squad_model():
    """Get Squad model and optimizer."""
    squad_model, core_model = bert_models.squad_model(
        bert_config,
        max_seq_length,
        hub_module_url=FLAGS.hub_module_url,
        hub_module_trainable=FLAGS.hub_module_trainable)
    optimizer = optimization.create_optimizer(FLAGS.learning_rate,
                                              steps_per_epoch * epochs,
                                              warmup_steps, FLAGS.end_lr,
                                              FLAGS.optimizer_type)

    squad_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16())
    return squad_model, core_model

  # Only when explicit_allreduce = True, post_allreduce_callbacks and
  # allreduce_bytes_per_pack will take effect. optimizer.apply_gradients() no
  # longer implicitly allreduce gradients, users manually allreduce gradient and
  # pass the allreduced grads_and_vars to apply_gradients().
  # With explicit_allreduce = True, clip_by_global_norm is moved to after
  # allreduce.
  model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_squad_model,
      loss_fn=get_loss_fn(),
      model_dir=FLAGS.model_dir,
      steps_per_epoch=steps_per_epoch,
      steps_per_loop=FLAGS.steps_per_loop,
      epochs=epochs,
      train_input_fn=train_input_fn,
      init_checkpoint=init_checkpoint or FLAGS.init_checkpoint,
      sub_model_export_name=sub_model_export_name,
      run_eagerly=run_eagerly,
      custom_callbacks=custom_callbacks,
      explicit_allreduce=FLAGS.explicit_allreduce,
      pre_allreduce_callbacks=[
          model_training_utils.clip_by_global_norm_callback
      ],
      allreduce_bytes_per_pack=FLAGS.allreduce_bytes_per_pack)


def prediction_output_squad(strategy, input_meta_data, tokenizer, squad_lib,
                            predict_file, squad_model):
  """Makes predictions for a squad dataset."""
  doc_stride = input_meta_data['doc_stride']
  max_query_length = input_meta_data['max_query_length']
  # Whether data should be in Ver 2.0 format.
  version_2_with_negative = input_meta_data.get('version_2_with_negative',
                                                False)
  eval_examples = squad_lib.read_squad_examples(
      input_file=predict_file,
      is_training=False,
      version_2_with_negative=version_2_with_negative)

  eval_writer = squad_lib.FeatureWriter(
      filename=os.path.join(FLAGS.model_dir, 'eval.tf_record'),
      is_training=False)
  eval_features = []

  def _append_feature(feature, is_padding):
    if not is_padding:
      eval_features.append(feature)
    eval_writer.process_feature(feature)

  # TPU requires a fixed batch size for all batches, therefore the number
  # of examples must be a multiple of the batch size, or else examples
  # will get dropped. So we pad with fake examples which are ignored
  # later on.
  kwargs = dict(
      examples=eval_examples,
      tokenizer=tokenizer,
      max_seq_length=input_meta_data['max_seq_length'],
      doc_stride=doc_stride,
      max_query_length=max_query_length,
      is_training=False,
      output_fn=_append_feature,
      batch_size=FLAGS.predict_batch_size)

  # squad_lib_sp requires one more argument 'do_lower_case'.
  if squad_lib == squad_lib_sp:
    kwargs['do_lower_case'] = FLAGS.do_lower_case
  dataset_size = squad_lib.convert_examples_to_features(**kwargs)
  eval_writer.close()

  logging.info('***** Running predictions *****')
  logging.info('  Num orig examples = %d', len(eval_examples))
  logging.info('  Num split examples = %d', len(eval_features))
  logging.info('  Batch size = %d', FLAGS.predict_batch_size)

  num_steps = int(dataset_size / FLAGS.predict_batch_size)
  all_results = predict_squad_customized(strategy, input_meta_data,
                                         eval_writer.filename, num_steps,
                                         squad_model)

  all_predictions, all_nbest_json, scores_diff_json = (
      squad_lib.postprocess_output(
          eval_examples,
          eval_features,
          all_results,
          FLAGS.n_best_size,
          FLAGS.max_answer_length,
          FLAGS.do_lower_case,
          version_2_with_negative=version_2_with_negative,
          null_score_diff_threshold=FLAGS.null_score_diff_threshold,
          verbose=FLAGS.verbose_logging))

  return all_predictions, all_nbest_json, scores_diff_json


def dump_to_files(all_predictions,
                  all_nbest_json,
                  scores_diff_json,
                  squad_lib,
                  version_2_with_negative,
                  file_prefix=''):
  """Save output to json files."""
  output_prediction_file = os.path.join(FLAGS.model_dir,
                                        '%spredictions.json' % file_prefix)
  output_nbest_file = os.path.join(FLAGS.model_dir,
                                   '%snbest_predictions.json' % file_prefix)
  output_null_log_odds_file = os.path.join(FLAGS.model_dir, file_prefix,
                                           '%snull_odds.json' % file_prefix)
  logging.info('Writing predictions to: %s', (output_prediction_file))
  logging.info('Writing nbest to: %s', (output_nbest_file))

  squad_lib.write_to_json_files(all_predictions, output_prediction_file)
  squad_lib.write_to_json_files(all_nbest_json, output_nbest_file)
  if version_2_with_negative:
    squad_lib.write_to_json_files(scores_diff_json, output_null_log_odds_file)


def _get_matched_files(input_path):
  """Returns all files that matches the input_path."""
  input_patterns = input_path.strip().split(',')
  all_matched_files = []
  for input_pattern in input_patterns:
    input_pattern = input_pattern.strip()
    if not input_pattern:
      continue
    matched_files = tf.io.gfile.glob(input_pattern)
    if not matched_files:
      raise ValueError('%s does not match any files.' % input_pattern)
    else:
      all_matched_files.extend(matched_files)
  return sorted(all_matched_files)


def predict_squad(strategy,
                  input_meta_data,
                  tokenizer,
                  bert_config,
                  squad_lib,
                  init_checkpoint=None):
  """Get prediction results and evaluate them to hard drive."""
  if init_checkpoint is None:
    init_checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir)

  all_predict_files = _get_matched_files(FLAGS.predict_file)
  squad_model = get_squad_model_to_predict(strategy, bert_config,
                                           init_checkpoint, input_meta_data)
  for idx, predict_file in enumerate(all_predict_files):
    all_predictions, all_nbest_json, scores_diff_json = prediction_output_squad(
        strategy, input_meta_data, tokenizer, squad_lib, predict_file,
        squad_model)
    if len(all_predict_files) == 1:
      file_prefix = ''
    else:
      # if predict_file is /path/xquad.ar.json, the `file_prefix` may be
      # "xquad.ar-0-"
      file_prefix = '%s-' % os.path.splitext(
          os.path.basename(all_predict_files[idx]))[0]
    dump_to_files(all_predictions, all_nbest_json, scores_diff_json, squad_lib,
                  input_meta_data.get('version_2_with_negative', False),
                  file_prefix)


def eval_squad(strategy,
               input_meta_data,
               tokenizer,
               bert_config,
               squad_lib,
               init_checkpoint=None):
  """Get prediction results and evaluate them against ground truth."""
  if init_checkpoint is None:
    init_checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir)

  all_predict_files = _get_matched_files(FLAGS.predict_file)
  if len(all_predict_files) != 1:
    raise ValueError('`eval_squad` only supports one predict file, '
                     'but got %s' % all_predict_files)

  squad_model = get_squad_model_to_predict(strategy, bert_config,
                                           init_checkpoint, input_meta_data)
  all_predictions, all_nbest_json, scores_diff_json = prediction_output_squad(
      strategy, input_meta_data, tokenizer, squad_lib, all_predict_files[0],
      squad_model)
  dump_to_files(all_predictions, all_nbest_json, scores_diff_json, squad_lib,
                input_meta_data.get('version_2_with_negative', False))

  with tf.io.gfile.GFile(FLAGS.predict_file, 'r') as reader:
    dataset_json = json.load(reader)
    pred_dataset = dataset_json['data']
  if input_meta_data.get('version_2_with_negative', False):
    eval_metrics = squad_evaluate_v2_0.evaluate(pred_dataset, all_predictions,
                                                scores_diff_json)
  else:
    eval_metrics = squad_evaluate_v1_1.evaluate(pred_dataset, all_predictions)
  return eval_metrics


def export_squad(model_export_path, input_meta_data, bert_config):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
    bert_config: Bert configuration file to define core bert layers.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  # Export uses float32 for now, even if training uses mixed precision.
  tf_keras.mixed_precision.set_global_policy('float32')
  squad_model, _ = bert_models.squad_model(bert_config,
                                           input_meta_data['max_seq_length'])
  model_saving_utils.export_bert_model(
      model_export_path, model=squad_model, checkpoint_dir=FLAGS.model_dir)