Spaces:
Runtime error
Runtime error
File size: 18,955 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library for running BERT family models on SQuAD 1.1/2.0 in TF 2.x."""
import collections
import json
import os
from absl import flags
from absl import logging
import tensorflow as tf, tf_keras
from official.legacy.bert import bert_models
from official.legacy.bert import common_flags
from official.legacy.bert import input_pipeline
from official.legacy.bert import model_saving_utils
from official.legacy.bert import model_training_utils
from official.modeling import performance
from official.nlp import optimization
from official.nlp.data import squad_lib_sp
from official.nlp.tools import squad_evaluate_v1_1
from official.nlp.tools import squad_evaluate_v2_0
from official.utils.misc import keras_utils
def define_common_squad_flags():
"""Defines common flags used by SQuAD tasks."""
flags.DEFINE_enum(
'mode', 'train_and_eval', [
'train_and_eval', 'train_and_predict', 'train', 'eval', 'predict',
'export_only'
], 'One of {"train_and_eval", "train_and_predict", '
'"train", "eval", "predict", "export_only"}. '
'`train_and_eval`: train & predict to json files & compute eval metrics. '
'`train_and_predict`: train & predict to json files. '
'`train`: only trains the model. '
'`eval`: predict answers from squad json file & compute eval metrics. '
'`predict`: predict answers from the squad json file. '
'`export_only`: will take the latest checkpoint inside '
'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', '',
'Training data path with train tfrecords.')
flags.DEFINE_string(
'input_meta_data_path', None,
'Path to file that contains meta data about input '
'to be used for training and evaluation.')
# Model training specific flags.
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
# Predict processing related.
flags.DEFINE_string(
'predict_file', None, 'SQuAD prediction json file path. '
'`predict` mode supports multiple files: one can use '
'wildcard to specify multiple files and it can also be '
'multiple file patterns separated by comma. Note that '
'`eval` mode only supports a single predict file.')
flags.DEFINE_bool(
'do_lower_case', True,
'Whether to lower case the input text. Should be True for uncased '
'models and False for cased models.')
flags.DEFINE_float(
'null_score_diff_threshold', 0.0,
'If null_score - best_non_null is greater than the threshold, '
'predict null. This is only used for SQuAD v2.')
flags.DEFINE_bool(
'verbose_logging', False,
'If true, all of the warnings related to data processing will be '
'printed. A number of warnings are expected for a normal SQuAD '
'evaluation.')
flags.DEFINE_integer('predict_batch_size', 8,
'Total batch size for prediction.')
flags.DEFINE_integer(
'n_best_size', 20,
'The total number of n-best predictions to generate in the '
'nbest_predictions.json output file.')
flags.DEFINE_integer(
'max_answer_length', 30,
'The maximum length of an answer that can be generated. This is needed '
'because the start and end predictions are not conditioned on one '
'another.')
common_flags.define_common_bert_flags()
FLAGS = flags.FLAGS
def squad_loss_fn(start_positions, end_positions, start_logits, end_logits):
"""Returns sparse categorical crossentropy for start/end logits."""
start_loss = tf_keras.losses.sparse_categorical_crossentropy(
start_positions, start_logits, from_logits=True)
end_loss = tf_keras.losses.sparse_categorical_crossentropy(
end_positions, end_logits, from_logits=True)
total_loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
return total_loss
def get_loss_fn():
"""Gets a loss function for squad task."""
def _loss_fn(labels, model_outputs):
start_positions = labels['start_positions']
end_positions = labels['end_positions']
start_logits, end_logits = model_outputs
return squad_loss_fn(start_positions, end_positions, start_logits,
end_logits)
return _loss_fn
RawResult = collections.namedtuple('RawResult',
['unique_id', 'start_logits', 'end_logits'])
def get_raw_results(predictions):
"""Converts multi-replica predictions to RawResult."""
for unique_ids, start_logits, end_logits in zip(predictions['unique_ids'],
predictions['start_logits'],
predictions['end_logits']):
for values in zip(unique_ids.numpy(), start_logits.numpy(),
end_logits.numpy()):
yield RawResult(
unique_id=values[0],
start_logits=values[1].tolist(),
end_logits=values[2].tolist())
def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
is_training):
"""Gets a closure to create a dataset.."""
def _dataset_fn(ctx=None):
"""Returns tf.data.Dataset for distributed BERT pretraining."""
batch_size = ctx.get_per_replica_batch_size(
global_batch_size) if ctx else global_batch_size
dataset = input_pipeline.create_squad_dataset(
input_file_pattern,
max_seq_length,
batch_size,
is_training=is_training,
input_pipeline_context=ctx)
return dataset
return _dataset_fn
def get_squad_model_to_predict(strategy, bert_config, checkpoint_path,
input_meta_data):
"""Gets a squad model to make predictions."""
with strategy.scope():
# Prediction always uses float32, even if training uses mixed precision.
tf_keras.mixed_precision.set_global_policy('float32')
squad_model, _ = bert_models.squad_model(
bert_config,
input_meta_data['max_seq_length'],
hub_module_url=FLAGS.hub_module_url)
if checkpoint_path is None:
checkpoint_path = tf.train.latest_checkpoint(FLAGS.model_dir)
logging.info('Restoring checkpoints from %s', checkpoint_path)
checkpoint = tf.train.Checkpoint(model=squad_model)
checkpoint.restore(checkpoint_path).expect_partial()
return squad_model
def predict_squad_customized(strategy, input_meta_data, predict_tfrecord_path,
num_steps, squad_model):
"""Make predictions using a Bert-based squad model."""
predict_dataset_fn = get_dataset_fn(
predict_tfrecord_path,
input_meta_data['max_seq_length'],
FLAGS.predict_batch_size,
is_training=False)
predict_iterator = iter(
strategy.distribute_datasets_from_function(predict_dataset_fn))
@tf.function
def predict_step(iterator):
"""Predicts on distributed devices."""
def _replicated_step(inputs):
"""Replicated prediction calculation."""
x, _ = inputs
unique_ids = x.pop('unique_ids')
start_logits, end_logits = squad_model(x, training=False)
return dict(
unique_ids=unique_ids,
start_logits=start_logits,
end_logits=end_logits)
outputs = strategy.run(_replicated_step, args=(next(iterator),))
return tf.nest.map_structure(strategy.experimental_local_results, outputs)
all_results = []
for _ in range(num_steps):
predictions = predict_step(predict_iterator)
for result in get_raw_results(predictions):
all_results.append(result)
if len(all_results) % 100 == 0:
logging.info('Made predictions for %d records.', len(all_results))
return all_results
def train_squad(strategy,
input_meta_data,
bert_config,
custom_callbacks=None,
run_eagerly=False,
init_checkpoint=None,
sub_model_export_name=None):
"""Run bert squad training."""
if strategy:
logging.info('Training using customized training loop with distribution'
' strategy.')
# Enables XLA in Session Config. Should not be set for TPU.
keras_utils.set_session_config(FLAGS.enable_xla)
performance.set_mixed_precision_policy(common_flags.dtype())
epochs = FLAGS.num_train_epochs
num_train_examples = input_meta_data['train_data_size']
max_seq_length = input_meta_data['max_seq_length']
steps_per_epoch = int(num_train_examples / FLAGS.train_batch_size)
warmup_steps = int(epochs * num_train_examples * 0.1 / FLAGS.train_batch_size)
train_input_fn = get_dataset_fn(
FLAGS.train_data_path,
max_seq_length,
FLAGS.train_batch_size,
is_training=True)
def _get_squad_model():
"""Get Squad model and optimizer."""
squad_model, core_model = bert_models.squad_model(
bert_config,
max_seq_length,
hub_module_url=FLAGS.hub_module_url,
hub_module_trainable=FLAGS.hub_module_trainable)
optimizer = optimization.create_optimizer(FLAGS.learning_rate,
steps_per_epoch * epochs,
warmup_steps, FLAGS.end_lr,
FLAGS.optimizer_type)
squad_model.optimizer = performance.configure_optimizer(
optimizer,
use_float16=common_flags.use_float16())
return squad_model, core_model
# Only when explicit_allreduce = True, post_allreduce_callbacks and
# allreduce_bytes_per_pack will take effect. optimizer.apply_gradients() no
# longer implicitly allreduce gradients, users manually allreduce gradient and
# pass the allreduced grads_and_vars to apply_gradients().
# With explicit_allreduce = True, clip_by_global_norm is moved to after
# allreduce.
model_training_utils.run_customized_training_loop(
strategy=strategy,
model_fn=_get_squad_model,
loss_fn=get_loss_fn(),
model_dir=FLAGS.model_dir,
steps_per_epoch=steps_per_epoch,
steps_per_loop=FLAGS.steps_per_loop,
epochs=epochs,
train_input_fn=train_input_fn,
init_checkpoint=init_checkpoint or FLAGS.init_checkpoint,
sub_model_export_name=sub_model_export_name,
run_eagerly=run_eagerly,
custom_callbacks=custom_callbacks,
explicit_allreduce=FLAGS.explicit_allreduce,
pre_allreduce_callbacks=[
model_training_utils.clip_by_global_norm_callback
],
allreduce_bytes_per_pack=FLAGS.allreduce_bytes_per_pack)
def prediction_output_squad(strategy, input_meta_data, tokenizer, squad_lib,
predict_file, squad_model):
"""Makes predictions for a squad dataset."""
doc_stride = input_meta_data['doc_stride']
max_query_length = input_meta_data['max_query_length']
# Whether data should be in Ver 2.0 format.
version_2_with_negative = input_meta_data.get('version_2_with_negative',
False)
eval_examples = squad_lib.read_squad_examples(
input_file=predict_file,
is_training=False,
version_2_with_negative=version_2_with_negative)
eval_writer = squad_lib.FeatureWriter(
filename=os.path.join(FLAGS.model_dir, 'eval.tf_record'),
is_training=False)
eval_features = []
def _append_feature(feature, is_padding):
if not is_padding:
eval_features.append(feature)
eval_writer.process_feature(feature)
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on.
kwargs = dict(
examples=eval_examples,
tokenizer=tokenizer,
max_seq_length=input_meta_data['max_seq_length'],
doc_stride=doc_stride,
max_query_length=max_query_length,
is_training=False,
output_fn=_append_feature,
batch_size=FLAGS.predict_batch_size)
# squad_lib_sp requires one more argument 'do_lower_case'.
if squad_lib == squad_lib_sp:
kwargs['do_lower_case'] = FLAGS.do_lower_case
dataset_size = squad_lib.convert_examples_to_features(**kwargs)
eval_writer.close()
logging.info('***** Running predictions *****')
logging.info(' Num orig examples = %d', len(eval_examples))
logging.info(' Num split examples = %d', len(eval_features))
logging.info(' Batch size = %d', FLAGS.predict_batch_size)
num_steps = int(dataset_size / FLAGS.predict_batch_size)
all_results = predict_squad_customized(strategy, input_meta_data,
eval_writer.filename, num_steps,
squad_model)
all_predictions, all_nbest_json, scores_diff_json = (
squad_lib.postprocess_output(
eval_examples,
eval_features,
all_results,
FLAGS.n_best_size,
FLAGS.max_answer_length,
FLAGS.do_lower_case,
version_2_with_negative=version_2_with_negative,
null_score_diff_threshold=FLAGS.null_score_diff_threshold,
verbose=FLAGS.verbose_logging))
return all_predictions, all_nbest_json, scores_diff_json
def dump_to_files(all_predictions,
all_nbest_json,
scores_diff_json,
squad_lib,
version_2_with_negative,
file_prefix=''):
"""Save output to json files."""
output_prediction_file = os.path.join(FLAGS.model_dir,
'%spredictions.json' % file_prefix)
output_nbest_file = os.path.join(FLAGS.model_dir,
'%snbest_predictions.json' % file_prefix)
output_null_log_odds_file = os.path.join(FLAGS.model_dir, file_prefix,
'%snull_odds.json' % file_prefix)
logging.info('Writing predictions to: %s', (output_prediction_file))
logging.info('Writing nbest to: %s', (output_nbest_file))
squad_lib.write_to_json_files(all_predictions, output_prediction_file)
squad_lib.write_to_json_files(all_nbest_json, output_nbest_file)
if version_2_with_negative:
squad_lib.write_to_json_files(scores_diff_json, output_null_log_odds_file)
def _get_matched_files(input_path):
"""Returns all files that matches the input_path."""
input_patterns = input_path.strip().split(',')
all_matched_files = []
for input_pattern in input_patterns:
input_pattern = input_pattern.strip()
if not input_pattern:
continue
matched_files = tf.io.gfile.glob(input_pattern)
if not matched_files:
raise ValueError('%s does not match any files.' % input_pattern)
else:
all_matched_files.extend(matched_files)
return sorted(all_matched_files)
def predict_squad(strategy,
input_meta_data,
tokenizer,
bert_config,
squad_lib,
init_checkpoint=None):
"""Get prediction results and evaluate them to hard drive."""
if init_checkpoint is None:
init_checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir)
all_predict_files = _get_matched_files(FLAGS.predict_file)
squad_model = get_squad_model_to_predict(strategy, bert_config,
init_checkpoint, input_meta_data)
for idx, predict_file in enumerate(all_predict_files):
all_predictions, all_nbest_json, scores_diff_json = prediction_output_squad(
strategy, input_meta_data, tokenizer, squad_lib, predict_file,
squad_model)
if len(all_predict_files) == 1:
file_prefix = ''
else:
# if predict_file is /path/xquad.ar.json, the `file_prefix` may be
# "xquad.ar-0-"
file_prefix = '%s-' % os.path.splitext(
os.path.basename(all_predict_files[idx]))[0]
dump_to_files(all_predictions, all_nbest_json, scores_diff_json, squad_lib,
input_meta_data.get('version_2_with_negative', False),
file_prefix)
def eval_squad(strategy,
input_meta_data,
tokenizer,
bert_config,
squad_lib,
init_checkpoint=None):
"""Get prediction results and evaluate them against ground truth."""
if init_checkpoint is None:
init_checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir)
all_predict_files = _get_matched_files(FLAGS.predict_file)
if len(all_predict_files) != 1:
raise ValueError('`eval_squad` only supports one predict file, '
'but got %s' % all_predict_files)
squad_model = get_squad_model_to_predict(strategy, bert_config,
init_checkpoint, input_meta_data)
all_predictions, all_nbest_json, scores_diff_json = prediction_output_squad(
strategy, input_meta_data, tokenizer, squad_lib, all_predict_files[0],
squad_model)
dump_to_files(all_predictions, all_nbest_json, scores_diff_json, squad_lib,
input_meta_data.get('version_2_with_negative', False))
with tf.io.gfile.GFile(FLAGS.predict_file, 'r') as reader:
dataset_json = json.load(reader)
pred_dataset = dataset_json['data']
if input_meta_data.get('version_2_with_negative', False):
eval_metrics = squad_evaluate_v2_0.evaluate(pred_dataset, all_predictions,
scores_diff_json)
else:
eval_metrics = squad_evaluate_v1_1.evaluate(pred_dataset, all_predictions)
return eval_metrics
def export_squad(model_export_path, input_meta_data, bert_config):
"""Exports a trained model as a `SavedModel` for inference.
Args:
model_export_path: a string specifying the path to the SavedModel directory.
input_meta_data: dictionary containing meta data about input and model.
bert_config: Bert configuration file to define core bert layers.
Raises:
Export path is not specified, got an empty string or None.
"""
if not model_export_path:
raise ValueError('Export path is not specified: %s' % model_export_path)
# Export uses float32 for now, even if training uses mixed precision.
tf_keras.mixed_precision.set_global_policy('float32')
squad_model, _ = bert_models.squad_model(bert_config,
input_meta_data['max_seq_length'])
model_saving_utils.export_bert_model(
model_export_path, model=squad_model, checkpoint_dir=FLAGS.model_dir)
|