Spaces:
Runtime error
Runtime error
File size: 12,120 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model definition for the ShapeMask Model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf, tf_keras
from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader import mode_keys
from official.legacy.detection.evaluation import factory as eval_factory
from official.legacy.detection.modeling import base_model
from official.legacy.detection.modeling import losses
from official.legacy.detection.modeling.architecture import factory
from official.legacy.detection.ops import postprocess_ops
from official.legacy.detection.utils import box_utils
class ShapeMaskModel(base_model.Model):
"""ShapeMask model function."""
def __init__(self, params):
super(ShapeMaskModel, self).__init__(params)
self._params = params
self._keras_model = None
# Architecture generators.
self._backbone_fn = factory.backbone_generator(params)
self._fpn_fn = factory.multilevel_features_generator(params)
self._retinanet_head_fn = factory.retinanet_head_generator(params)
self._shape_prior_head_fn = factory.shapeprior_head_generator(params)
self._coarse_mask_fn = factory.coarsemask_head_generator(params)
self._fine_mask_fn = factory.finemask_head_generator(params)
# Loss functions.
self._cls_loss_fn = losses.RetinanetClassLoss(
params.retinanet_loss, params.architecture.num_classes)
self._box_loss_fn = losses.RetinanetBoxLoss(params.retinanet_loss)
self._box_loss_weight = params.retinanet_loss.box_loss_weight
# Mask loss function.
self._shapemask_prior_loss_fn = losses.ShapemaskMseLoss()
self._shapemask_loss_fn = losses.ShapemaskLoss()
self._shape_prior_loss_weight = (
params.shapemask_loss.shape_prior_loss_weight)
self._coarse_mask_loss_weight = (
params.shapemask_loss.coarse_mask_loss_weight)
self._fine_mask_loss_weight = (params.shapemask_loss.fine_mask_loss_weight)
# Predict function.
self._generate_detections_fn = postprocess_ops.MultilevelDetectionGenerator(
params.architecture.min_level, params.architecture.max_level,
params.postprocess)
def build_outputs(self, inputs, mode):
is_training = mode == mode_keys.TRAIN
images = inputs['image']
if 'anchor_boxes' in inputs:
anchor_boxes = inputs['anchor_boxes']
else:
anchor_boxes = anchor.Anchor(
self._params.architecture.min_level,
self._params.architecture.max_level, self._params.anchor.num_scales,
self._params.anchor.aspect_ratios, self._params.anchor.anchor_size,
images.get_shape().as_list()[1:3]).multilevel_boxes
batch_size = tf.shape(images)[0]
for level in anchor_boxes:
anchor_boxes[level] = tf.tile(
tf.expand_dims(anchor_boxes[level], 0), [batch_size, 1, 1, 1])
backbone_features = self._backbone_fn(images, is_training=is_training)
fpn_features = self._fpn_fn(backbone_features, is_training=is_training)
cls_outputs, box_outputs = self._retinanet_head_fn(
fpn_features, is_training=is_training)
valid_boxes, valid_scores, valid_classes, valid_detections = (
self._generate_detections_fn(box_outputs, cls_outputs, anchor_boxes,
inputs['image_info'][:, 1:2, :]))
image_size = images.get_shape().as_list()[1:3]
valid_outer_boxes = box_utils.compute_outer_boxes(
tf.reshape(valid_boxes, [-1, 4]),
image_size,
scale=self._params.shapemask_parser.outer_box_scale)
valid_outer_boxes = tf.reshape(valid_outer_boxes, tf.shape(valid_boxes))
# Wrapping if else code paths into a layer to make the checkpoint loadable
# in prediction mode.
class SampledBoxesLayer(tf_keras.layers.Layer):
"""ShapeMask model function."""
def call(self, inputs, val_boxes, val_classes, val_outer_boxes, training):
if training:
boxes = inputs['mask_boxes']
outer_boxes = inputs['mask_outer_boxes']
classes = inputs['mask_classes']
else:
boxes = val_boxes
classes = val_classes
outer_boxes = val_outer_boxes
return boxes, classes, outer_boxes
boxes, classes, outer_boxes = SampledBoxesLayer()(
inputs,
valid_boxes,
valid_classes,
valid_outer_boxes,
training=is_training)
instance_features, prior_masks = self._shape_prior_head_fn(
fpn_features, boxes, outer_boxes, classes, is_training)
coarse_mask_logits = self._coarse_mask_fn(instance_features, prior_masks,
classes, is_training)
fine_mask_logits = self._fine_mask_fn(instance_features, coarse_mask_logits,
classes, is_training)
model_outputs = {
'cls_outputs': cls_outputs,
'box_outputs': box_outputs,
'fine_mask_logits': fine_mask_logits,
'coarse_mask_logits': coarse_mask_logits,
'prior_masks': prior_masks,
}
if not is_training:
model_outputs.update({
'num_detections': valid_detections,
'detection_boxes': valid_boxes,
'detection_outer_boxes': valid_outer_boxes,
'detection_masks': fine_mask_logits,
'detection_classes': valid_classes,
'detection_scores': valid_scores,
})
return model_outputs
def build_loss_fn(self):
if self._keras_model is None:
raise ValueError('build_loss_fn() must be called after build_model().')
filter_fn = self.make_filter_trainable_variables_fn()
trainable_variables = filter_fn(self._keras_model.trainable_variables)
def _total_loss_fn(labels, outputs):
cls_loss = self._cls_loss_fn(outputs['cls_outputs'],
labels['cls_targets'],
labels['num_positives'])
box_loss = self._box_loss_fn(outputs['box_outputs'],
labels['box_targets'],
labels['num_positives'])
# Adds Shapemask model losses.
shape_prior_loss = self._shapemask_prior_loss_fn(outputs['prior_masks'],
labels['mask_targets'],
labels['mask_is_valid'])
coarse_mask_loss = self._shapemask_loss_fn(outputs['coarse_mask_logits'],
labels['mask_targets'],
labels['mask_is_valid'])
fine_mask_loss = self._shapemask_loss_fn(outputs['fine_mask_logits'],
labels['fine_mask_targets'],
labels['mask_is_valid'])
model_loss = (
cls_loss + self._box_loss_weight * box_loss +
shape_prior_loss * self._shape_prior_loss_weight +
coarse_mask_loss * self._coarse_mask_loss_weight +
fine_mask_loss * self._fine_mask_loss_weight)
l2_regularization_loss = self.weight_decay_loss(trainable_variables)
total_loss = model_loss + l2_regularization_loss
shapemask_losses = {
'total_loss': total_loss,
'loss': total_loss,
'retinanet_cls_loss': cls_loss,
'l2_regularization_loss': l2_regularization_loss,
'retinanet_box_loss': box_loss,
'shapemask_prior_loss': shape_prior_loss,
'shapemask_coarse_mask_loss': coarse_mask_loss,
'shapemask_fine_mask_loss': fine_mask_loss,
'model_loss': model_loss,
}
return shapemask_losses
return _total_loss_fn
def build_input_layers(self, params, mode):
is_training = mode == mode_keys.TRAIN
input_shape = (
params.shapemask_parser.output_size +
[params.shapemask_parser.num_channels])
if is_training:
batch_size = params.train.batch_size
input_layer = {
'image':
tf_keras.layers.Input(
shape=input_shape,
batch_size=batch_size,
name='image',
dtype=tf.bfloat16 if self._use_bfloat16 else tf.float32),
'image_info':
tf_keras.layers.Input(
shape=[4, 2], batch_size=batch_size, name='image_info'),
'mask_classes':
tf_keras.layers.Input(
shape=[params.shapemask_parser.num_sampled_masks],
batch_size=batch_size,
name='mask_classes',
dtype=tf.int64),
'mask_outer_boxes':
tf_keras.layers.Input(
shape=[params.shapemask_parser.num_sampled_masks, 4],
batch_size=batch_size,
name='mask_outer_boxes',
dtype=tf.float32),
'mask_boxes':
tf_keras.layers.Input(
shape=[params.shapemask_parser.num_sampled_masks, 4],
batch_size=batch_size,
name='mask_boxes',
dtype=tf.float32),
}
else:
batch_size = params.eval.batch_size
input_layer = {
'image':
tf_keras.layers.Input(
shape=input_shape,
batch_size=batch_size,
name='image',
dtype=tf.bfloat16 if self._use_bfloat16 else tf.float32),
'image_info':
tf_keras.layers.Input(
shape=[4, 2], batch_size=batch_size, name='image_info'),
}
return input_layer
def build_model(self, params, mode):
if self._keras_model is None:
input_layers = self.build_input_layers(self._params, mode)
outputs = self.model_outputs(input_layers, mode)
model = tf_keras.models.Model(
inputs=input_layers, outputs=outputs, name='shapemask')
assert model is not None, 'Fail to build tf_keras.Model.'
model.optimizer = self.build_optimizer()
self._keras_model = model
return self._keras_model
def post_processing(self, labels, outputs):
required_output_fields = [
'num_detections', 'detection_boxes', 'detection_classes',
'detection_masks', 'detection_scores'
]
for field in required_output_fields:
if field not in outputs:
raise ValueError(
'"{}" is missing in outputs, requried {} found {}'.format(
field, required_output_fields, outputs.keys()))
required_label_fields = ['image_info']
for field in required_label_fields:
if field not in labels:
raise ValueError(
'"{}" is missing in labels, requried {} found {}'.format(
field, required_label_fields, labels.keys()))
predictions = {
'image_info': labels['image_info'],
'num_detections': outputs['num_detections'],
'detection_boxes': outputs['detection_boxes'],
'detection_outer_boxes': outputs['detection_outer_boxes'],
'detection_classes': outputs['detection_classes'],
'detection_scores': outputs['detection_scores'],
'detection_masks': outputs['detection_masks'],
}
if 'groundtruths' in labels:
predictions['source_id'] = labels['groundtruths']['source_id']
labels = labels['groundtruths']
return labels, predictions
def eval_metrics(self):
return eval_factory.evaluator_generator(self._params.eval)
|