File size: 12,120 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Model definition for the ShapeMask Model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf, tf_keras

from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader import mode_keys
from official.legacy.detection.evaluation import factory as eval_factory
from official.legacy.detection.modeling import base_model
from official.legacy.detection.modeling import losses
from official.legacy.detection.modeling.architecture import factory
from official.legacy.detection.ops import postprocess_ops
from official.legacy.detection.utils import box_utils


class ShapeMaskModel(base_model.Model):
  """ShapeMask model function."""

  def __init__(self, params):
    super(ShapeMaskModel, self).__init__(params)

    self._params = params
    self._keras_model = None

    # Architecture generators.
    self._backbone_fn = factory.backbone_generator(params)
    self._fpn_fn = factory.multilevel_features_generator(params)
    self._retinanet_head_fn = factory.retinanet_head_generator(params)
    self._shape_prior_head_fn = factory.shapeprior_head_generator(params)
    self._coarse_mask_fn = factory.coarsemask_head_generator(params)
    self._fine_mask_fn = factory.finemask_head_generator(params)

    # Loss functions.
    self._cls_loss_fn = losses.RetinanetClassLoss(
        params.retinanet_loss, params.architecture.num_classes)
    self._box_loss_fn = losses.RetinanetBoxLoss(params.retinanet_loss)
    self._box_loss_weight = params.retinanet_loss.box_loss_weight

    # Mask loss function.
    self._shapemask_prior_loss_fn = losses.ShapemaskMseLoss()
    self._shapemask_loss_fn = losses.ShapemaskLoss()
    self._shape_prior_loss_weight = (
        params.shapemask_loss.shape_prior_loss_weight)
    self._coarse_mask_loss_weight = (
        params.shapemask_loss.coarse_mask_loss_weight)
    self._fine_mask_loss_weight = (params.shapemask_loss.fine_mask_loss_weight)

    # Predict function.
    self._generate_detections_fn = postprocess_ops.MultilevelDetectionGenerator(
        params.architecture.min_level, params.architecture.max_level,
        params.postprocess)

  def build_outputs(self, inputs, mode):
    is_training = mode == mode_keys.TRAIN
    images = inputs['image']

    if 'anchor_boxes' in inputs:
      anchor_boxes = inputs['anchor_boxes']
    else:
      anchor_boxes = anchor.Anchor(
          self._params.architecture.min_level,
          self._params.architecture.max_level, self._params.anchor.num_scales,
          self._params.anchor.aspect_ratios, self._params.anchor.anchor_size,
          images.get_shape().as_list()[1:3]).multilevel_boxes

      batch_size = tf.shape(images)[0]
      for level in anchor_boxes:
        anchor_boxes[level] = tf.tile(
            tf.expand_dims(anchor_boxes[level], 0), [batch_size, 1, 1, 1])

    backbone_features = self._backbone_fn(images, is_training=is_training)
    fpn_features = self._fpn_fn(backbone_features, is_training=is_training)
    cls_outputs, box_outputs = self._retinanet_head_fn(
        fpn_features, is_training=is_training)

    valid_boxes, valid_scores, valid_classes, valid_detections = (
        self._generate_detections_fn(box_outputs, cls_outputs, anchor_boxes,
                                     inputs['image_info'][:, 1:2, :]))

    image_size = images.get_shape().as_list()[1:3]
    valid_outer_boxes = box_utils.compute_outer_boxes(
        tf.reshape(valid_boxes, [-1, 4]),
        image_size,
        scale=self._params.shapemask_parser.outer_box_scale)
    valid_outer_boxes = tf.reshape(valid_outer_boxes, tf.shape(valid_boxes))

    # Wrapping if else code paths into a layer to make the checkpoint loadable
    # in prediction mode.
    class SampledBoxesLayer(tf_keras.layers.Layer):
      """ShapeMask model function."""

      def call(self, inputs, val_boxes, val_classes, val_outer_boxes, training):
        if training:
          boxes = inputs['mask_boxes']
          outer_boxes = inputs['mask_outer_boxes']
          classes = inputs['mask_classes']
        else:
          boxes = val_boxes
          classes = val_classes
          outer_boxes = val_outer_boxes
        return boxes, classes, outer_boxes

    boxes, classes, outer_boxes = SampledBoxesLayer()(
        inputs,
        valid_boxes,
        valid_classes,
        valid_outer_boxes,
        training=is_training)

    instance_features, prior_masks = self._shape_prior_head_fn(
        fpn_features, boxes, outer_boxes, classes, is_training)
    coarse_mask_logits = self._coarse_mask_fn(instance_features, prior_masks,
                                              classes, is_training)
    fine_mask_logits = self._fine_mask_fn(instance_features, coarse_mask_logits,
                                          classes, is_training)

    model_outputs = {
        'cls_outputs': cls_outputs,
        'box_outputs': box_outputs,
        'fine_mask_logits': fine_mask_logits,
        'coarse_mask_logits': coarse_mask_logits,
        'prior_masks': prior_masks,
    }

    if not is_training:
      model_outputs.update({
          'num_detections': valid_detections,
          'detection_boxes': valid_boxes,
          'detection_outer_boxes': valid_outer_boxes,
          'detection_masks': fine_mask_logits,
          'detection_classes': valid_classes,
          'detection_scores': valid_scores,
      })

    return model_outputs

  def build_loss_fn(self):
    if self._keras_model is None:
      raise ValueError('build_loss_fn() must be called after build_model().')

    filter_fn = self.make_filter_trainable_variables_fn()
    trainable_variables = filter_fn(self._keras_model.trainable_variables)

    def _total_loss_fn(labels, outputs):
      cls_loss = self._cls_loss_fn(outputs['cls_outputs'],
                                   labels['cls_targets'],
                                   labels['num_positives'])
      box_loss = self._box_loss_fn(outputs['box_outputs'],
                                   labels['box_targets'],
                                   labels['num_positives'])

      # Adds Shapemask model losses.
      shape_prior_loss = self._shapemask_prior_loss_fn(outputs['prior_masks'],
                                                       labels['mask_targets'],
                                                       labels['mask_is_valid'])
      coarse_mask_loss = self._shapemask_loss_fn(outputs['coarse_mask_logits'],
                                                 labels['mask_targets'],
                                                 labels['mask_is_valid'])
      fine_mask_loss = self._shapemask_loss_fn(outputs['fine_mask_logits'],
                                               labels['fine_mask_targets'],
                                               labels['mask_is_valid'])

      model_loss = (
          cls_loss + self._box_loss_weight * box_loss +
          shape_prior_loss * self._shape_prior_loss_weight +
          coarse_mask_loss * self._coarse_mask_loss_weight +
          fine_mask_loss * self._fine_mask_loss_weight)

      l2_regularization_loss = self.weight_decay_loss(trainable_variables)
      total_loss = model_loss + l2_regularization_loss

      shapemask_losses = {
          'total_loss': total_loss,
          'loss': total_loss,
          'retinanet_cls_loss': cls_loss,
          'l2_regularization_loss': l2_regularization_loss,
          'retinanet_box_loss': box_loss,
          'shapemask_prior_loss': shape_prior_loss,
          'shapemask_coarse_mask_loss': coarse_mask_loss,
          'shapemask_fine_mask_loss': fine_mask_loss,
          'model_loss': model_loss,
      }
      return shapemask_losses

    return _total_loss_fn

  def build_input_layers(self, params, mode):
    is_training = mode == mode_keys.TRAIN
    input_shape = (
        params.shapemask_parser.output_size +
        [params.shapemask_parser.num_channels])
    if is_training:
      batch_size = params.train.batch_size
      input_layer = {
          'image':
              tf_keras.layers.Input(
                  shape=input_shape,
                  batch_size=batch_size,
                  name='image',
                  dtype=tf.bfloat16 if self._use_bfloat16 else tf.float32),
          'image_info':
              tf_keras.layers.Input(
                  shape=[4, 2], batch_size=batch_size, name='image_info'),
          'mask_classes':
              tf_keras.layers.Input(
                  shape=[params.shapemask_parser.num_sampled_masks],
                  batch_size=batch_size,
                  name='mask_classes',
                  dtype=tf.int64),
          'mask_outer_boxes':
              tf_keras.layers.Input(
                  shape=[params.shapemask_parser.num_sampled_masks, 4],
                  batch_size=batch_size,
                  name='mask_outer_boxes',
                  dtype=tf.float32),
          'mask_boxes':
              tf_keras.layers.Input(
                  shape=[params.shapemask_parser.num_sampled_masks, 4],
                  batch_size=batch_size,
                  name='mask_boxes',
                  dtype=tf.float32),
      }
    else:
      batch_size = params.eval.batch_size
      input_layer = {
          'image':
              tf_keras.layers.Input(
                  shape=input_shape,
                  batch_size=batch_size,
                  name='image',
                  dtype=tf.bfloat16 if self._use_bfloat16 else tf.float32),
          'image_info':
              tf_keras.layers.Input(
                  shape=[4, 2], batch_size=batch_size, name='image_info'),
      }
    return input_layer

  def build_model(self, params, mode):
    if self._keras_model is None:
      input_layers = self.build_input_layers(self._params, mode)
      outputs = self.model_outputs(input_layers, mode)

      model = tf_keras.models.Model(
          inputs=input_layers, outputs=outputs, name='shapemask')
      assert model is not None, 'Fail to build tf_keras.Model.'
      model.optimizer = self.build_optimizer()
      self._keras_model = model

    return self._keras_model

  def post_processing(self, labels, outputs):
    required_output_fields = [
        'num_detections', 'detection_boxes', 'detection_classes',
        'detection_masks', 'detection_scores'
    ]

    for field in required_output_fields:
      if field not in outputs:
        raise ValueError(
            '"{}" is missing in outputs, requried {} found {}'.format(
                field, required_output_fields, outputs.keys()))

    required_label_fields = ['image_info']
    for field in required_label_fields:
      if field not in labels:
        raise ValueError(
            '"{}" is missing in labels, requried {} found {}'.format(
                field, required_label_fields, labels.keys()))

    predictions = {
        'image_info': labels['image_info'],
        'num_detections': outputs['num_detections'],
        'detection_boxes': outputs['detection_boxes'],
        'detection_outer_boxes': outputs['detection_outer_boxes'],
        'detection_classes': outputs['detection_classes'],
        'detection_scores': outputs['detection_scores'],
        'detection_masks': outputs['detection_masks'],
    }

    if 'groundtruths' in labels:
      predictions['source_id'] = labels['groundtruths']['source_id']
      labels = labels['groundtruths']

    return labels, predictions

  def eval_metrics(self):
    return eval_factory.evaluator_generator(self._params.eval)