File size: 26,060 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utility functions for bounding box processing."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf, tf_keras

EPSILON = 1e-8
BBOX_XFORM_CLIP = np.log(1000. / 16.)


def visualize_images_with_bounding_boxes(images, box_outputs, step,
                                         summary_writer):
  """Records subset of evaluation images with bounding boxes."""
  image_shape = tf.shape(images[0])
  image_height = tf.cast(image_shape[0], tf.float32)
  image_width = tf.cast(image_shape[1], tf.float32)
  normalized_boxes = normalize_boxes(box_outputs, [image_height, image_width])

  bounding_box_color = tf.constant([[1.0, 1.0, 0.0, 1.0]])
  image_summary = tf.image.draw_bounding_boxes(images, normalized_boxes,
                                               bounding_box_color)
  with summary_writer.as_default():
    tf.summary.image('bounding_box_summary', image_summary, step=step)
    summary_writer.flush()


def yxyx_to_xywh(boxes):
  """Converts boxes from ymin, xmin, ymax, xmax to xmin, ymin, width, height.

  Args:
    boxes: a numpy array whose last dimension is 4 representing the coordinates
      of boxes in ymin, xmin, ymax, xmax order.

  Returns:
    boxes: a numpy array whose shape is the same as `boxes` in new format.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
        boxes.shape[-1]))

  boxes_ymin = boxes[..., 0]
  boxes_xmin = boxes[..., 1]
  boxes_width = boxes[..., 3] - boxes[..., 1]
  boxes_height = boxes[..., 2] - boxes[..., 0]
  new_boxes = np.stack([boxes_xmin, boxes_ymin, boxes_width, boxes_height],
                       axis=-1)

  return new_boxes


def jitter_boxes(boxes, noise_scale=0.025):
  """Jitter the box coordinates by some noise distribution.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    noise_scale: a python float which specifies the magnitude of noise. The rule
      of thumb is to set this between (0, 0.1]. The default value is found to
      mimic the noisy detections best empirically.

  Returns:
    jittered_boxes: a tensor whose shape is the same as `boxes` representing
      the jittered boxes.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
        boxes.shape[-1]))

  with tf.name_scope('jitter_boxes'):
    bbox_jitters = tf.random.normal(boxes.get_shape(), stddev=noise_scale)
    ymin = boxes[..., 0:1]
    xmin = boxes[..., 1:2]
    ymax = boxes[..., 2:3]
    xmax = boxes[..., 3:4]
    width = xmax - xmin
    height = ymax - ymin
    new_center_x = (xmin + xmax) / 2.0 + bbox_jitters[..., 0:1] * width
    new_center_y = (ymin + ymax) / 2.0 + bbox_jitters[..., 1:2] * height
    new_width = width * tf.math.exp(bbox_jitters[..., 2:3])
    new_height = height * tf.math.exp(bbox_jitters[..., 3:4])
    jittered_boxes = tf.concat([
        new_center_y - new_height * 0.5, new_center_x - new_width * 0.5,
        new_center_y + new_height * 0.5, new_center_x + new_width * 0.5
    ],
                               axis=-1)

    return jittered_boxes


def normalize_boxes(boxes, image_shape):
  """Converts boxes to the normalized coordinates.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    image_shape: a list of two integers, a two-element vector or a tensor such
      that all but the last dimensions are `broadcastable` to `boxes`. The last
      dimension is 2, which represents [height, width].

  Returns:
    normalized_boxes: a tensor whose shape is the same as `boxes` representing
      the normalized boxes.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
        boxes.shape[-1]))

  with tf.name_scope('normalize_boxes'):
    if isinstance(image_shape, list) or isinstance(image_shape, tuple):
      height, width = image_shape
    else:
      image_shape = tf.cast(image_shape, dtype=boxes.dtype)
      height = image_shape[..., 0:1]
      width = image_shape[..., 1:2]

    ymin = boxes[..., 0:1] / height
    xmin = boxes[..., 1:2] / width
    ymax = boxes[..., 2:3] / height
    xmax = boxes[..., 3:4] / width

    normalized_boxes = tf.concat([ymin, xmin, ymax, xmax], axis=-1)
    return normalized_boxes


def denormalize_boxes(boxes, image_shape):
  """Converts boxes normalized by [height, width] to pixel coordinates.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    image_shape: a list of two integers, a two-element vector or a tensor such
      that all but the last dimensions are `broadcastable` to `boxes`. The last
      dimension is 2, which represents [height, width].

  Returns:
    denormalized_boxes: a tensor whose shape is the same as `boxes` representing
      the denormalized boxes.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  with tf.name_scope('denormalize_boxes'):
    if isinstance(image_shape, list) or isinstance(image_shape, tuple):
      height, width = image_shape
    else:
      image_shape = tf.cast(image_shape, dtype=boxes.dtype)
      height, width = tf.split(image_shape, 2, axis=-1)

    ymin, xmin, ymax, xmax = tf.split(boxes, 4, axis=-1)
    ymin = ymin * height
    xmin = xmin * width
    ymax = ymax * height
    xmax = xmax * width

    denormalized_boxes = tf.concat([ymin, xmin, ymax, xmax], axis=-1)
    return denormalized_boxes


def clip_boxes(boxes, image_shape):
  """Clips boxes to image boundaries.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    image_shape: a list of two integers, a two-element vector or a tensor such
      that all but the last dimensions are `broadcastable` to `boxes`. The last
      dimension is 2, which represents [height, width].

  Returns:
    clipped_boxes: a tensor whose shape is the same as `boxes` representing the
      clipped boxes.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
        boxes.shape[-1]))

  with tf.name_scope('clip_boxes'):
    if isinstance(image_shape, list) or isinstance(image_shape, tuple):
      height, width = image_shape
      max_length = [height - 1.0, width - 1.0, height - 1.0, width - 1.0]
    else:
      image_shape = tf.cast(image_shape, dtype=boxes.dtype)
      height, width = tf.unstack(image_shape, axis=-1)
      max_length = tf.stack(
          [height - 1.0, width - 1.0, height - 1.0, width - 1.0], axis=-1)

    clipped_boxes = tf.math.maximum(tf.math.minimum(boxes, max_length), 0.0)
    return clipped_boxes


def compute_outer_boxes(boxes, image_shape, scale=1.0):
  """Compute outer box encloses an object with a margin.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    image_shape: a list of two integers, a two-element vector or a tensor such
      that all but the last dimensions are `broadcastable` to `boxes`. The last
      dimension is 2, which represents [height, width].
    scale: a float number specifying the scale of output outer boxes to input
      `boxes`.

  Returns:
    outer_boxes: a tensor whose shape is the same as `boxes` representing the
      outer boxes.
  """
  if scale < 1.0:
    raise ValueError(
        'scale is {}, but outer box scale must be greater than 1.0.'.format(
            scale))
  centers_y = (boxes[..., 0] + boxes[..., 2]) / 2.0
  centers_x = (boxes[..., 1] + boxes[..., 3]) / 2.0
  box_height = (boxes[..., 2] - boxes[..., 0]) * scale
  box_width = (boxes[..., 3] - boxes[..., 1]) * scale
  outer_boxes = tf.stack([
      centers_y - box_height / 2.0, centers_x - box_width / 2.0,
      centers_y + box_height / 2.0, centers_x + box_width / 2.0
  ],
                         axis=1)
  outer_boxes = clip_boxes(outer_boxes, image_shape)
  return outer_boxes


def encode_boxes(boxes, anchors, weights=None):
  """Encode boxes to targets.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
      representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
    weights: None or a list of four float numbers used to scale coordinates.

  Returns:
    encoded_boxes: a tensor whose shape is the same as `boxes` representing the
      encoded box targets.

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
        boxes.shape[-1]))

  with tf.name_scope('encode_boxes'):
    boxes = tf.cast(boxes, dtype=anchors.dtype)
    ymin = boxes[..., 0:1]
    xmin = boxes[..., 1:2]
    ymax = boxes[..., 2:3]
    xmax = boxes[..., 3:4]
    box_h = ymax - ymin + 1.0
    box_w = xmax - xmin + 1.0
    box_yc = ymin + 0.5 * box_h
    box_xc = xmin + 0.5 * box_w

    anchor_ymin = anchors[..., 0:1]
    anchor_xmin = anchors[..., 1:2]
    anchor_ymax = anchors[..., 2:3]
    anchor_xmax = anchors[..., 3:4]
    anchor_h = anchor_ymax - anchor_ymin + 1.0
    anchor_w = anchor_xmax - anchor_xmin + 1.0
    anchor_yc = anchor_ymin + 0.5 * anchor_h
    anchor_xc = anchor_xmin + 0.5 * anchor_w

    encoded_dy = (box_yc - anchor_yc) / anchor_h
    encoded_dx = (box_xc - anchor_xc) / anchor_w
    encoded_dh = tf.math.log(box_h / anchor_h)
    encoded_dw = tf.math.log(box_w / anchor_w)
    if weights:
      encoded_dy *= weights[0]
      encoded_dx *= weights[1]
      encoded_dh *= weights[2]
      encoded_dw *= weights[3]

    encoded_boxes = tf.concat([encoded_dy, encoded_dx, encoded_dh, encoded_dw],
                              axis=-1)
    return encoded_boxes


def decode_boxes(encoded_boxes, anchors, weights=None):
  """Decode boxes.

  Args:
    encoded_boxes: a tensor whose last dimension is 4 representing the
      coordinates of encoded boxes in ymin, xmin, ymax, xmax order.
    anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
      representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
    weights: None or a list of four float numbers used to scale coordinates.

  Returns:
    encoded_boxes: a tensor whose shape is the same as `boxes` representing the
      decoded box targets.
  """
  if encoded_boxes.shape[-1] != 4:
    raise ValueError('encoded_boxes.shape[-1] is {:d}, but must be 4.'.format(
        encoded_boxes.shape[-1]))

  with tf.name_scope('decode_boxes'):
    encoded_boxes = tf.cast(encoded_boxes, dtype=anchors.dtype)
    dy = encoded_boxes[..., 0:1]
    dx = encoded_boxes[..., 1:2]
    dh = encoded_boxes[..., 2:3]
    dw = encoded_boxes[..., 3:4]
    if weights:
      dy /= weights[0]
      dx /= weights[1]
      dh /= weights[2]
      dw /= weights[3]
    dh = tf.math.minimum(dh, BBOX_XFORM_CLIP)
    dw = tf.math.minimum(dw, BBOX_XFORM_CLIP)

    anchor_ymin = anchors[..., 0:1]
    anchor_xmin = anchors[..., 1:2]
    anchor_ymax = anchors[..., 2:3]
    anchor_xmax = anchors[..., 3:4]
    anchor_h = anchor_ymax - anchor_ymin + 1.0
    anchor_w = anchor_xmax - anchor_xmin + 1.0
    anchor_yc = anchor_ymin + 0.5 * anchor_h
    anchor_xc = anchor_xmin + 0.5 * anchor_w

    decoded_boxes_yc = dy * anchor_h + anchor_yc
    decoded_boxes_xc = dx * anchor_w + anchor_xc
    decoded_boxes_h = tf.math.exp(dh) * anchor_h
    decoded_boxes_w = tf.math.exp(dw) * anchor_w

    decoded_boxes_ymin = decoded_boxes_yc - 0.5 * decoded_boxes_h
    decoded_boxes_xmin = decoded_boxes_xc - 0.5 * decoded_boxes_w
    decoded_boxes_ymax = decoded_boxes_ymin + decoded_boxes_h - 1.0
    decoded_boxes_xmax = decoded_boxes_xmin + decoded_boxes_w - 1.0

    decoded_boxes = tf.concat([
        decoded_boxes_ymin, decoded_boxes_xmin, decoded_boxes_ymax,
        decoded_boxes_xmax
    ],
                              axis=-1)
    return decoded_boxes


def encode_boxes_lrtb(boxes, anchors, weights=None):
  """Encode boxes to targets on lrtb (=left,right,top,bottom) format.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates
      of boxes in ymin, xmin, ymax, xmax order.
    anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
      representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
    weights: None or a list of four float numbers used to scale coordinates.

  Returns:
    encoded_boxes_lrtb: a tensor whose shape is the same as `boxes` representing
      the encoded box targets. The box targets encode the left, right, top,
      bottom distances from an anchor location to the four borders of the
      matched groundtruth bounding box.
    center_targets: centerness targets defined by the left, right, top, and
      bottom distance targets. The centerness is defined as the deviation of the
      anchor location from the groundtruth object center. Formally, centerness =
      sqrt(min(left, right)/max(left, right)*min(top, bottom)/max(top, bottom)).

  Raises:
    ValueError: If the last dimension of boxes is not 4.
  """
  if boxes.shape[-1] != 4:
    raise ValueError(
        'boxes.shape[-1] is {:d}, but must be 4.'.format(boxes.shape[-1]))

  with tf.name_scope('encode_boxes_lrtb'):
    boxes = tf.cast(boxes, dtype=anchors.dtype)
    ymin = boxes[..., 0:1]
    xmin = boxes[..., 1:2]
    ymax = boxes[..., 2:3]
    xmax = boxes[..., 3:4]
    # box_h = ymax - ymin + 1.0
    # box_w = xmax - xmin + 1.0
    box_h = ymax - ymin
    box_w = xmax - xmin

    anchor_ymin = anchors[..., 0:1]
    anchor_xmin = anchors[..., 1:2]
    anchor_ymax = anchors[..., 2:3]
    anchor_xmax = anchors[..., 3:4]
    # anchor_h = anchor_ymax - anchor_ymin + 1.0
    # anchor_w = anchor_xmax - anchor_xmin + 1.0
    anchor_h = anchor_ymax - anchor_ymin
    anchor_w = anchor_xmax - anchor_xmin
    anchor_yc = anchor_ymin + 0.5 * anchor_h
    anchor_xc = anchor_xmin + 0.5 * anchor_w

    box_h += EPSILON
    box_w += EPSILON
    anchor_h += EPSILON
    anchor_w += EPSILON

    left = (anchor_xc - xmin) / anchor_w
    right = (xmax - anchor_xc) / anchor_w
    top = (anchor_yc - ymin) / anchor_h
    bottom = (ymax - anchor_yc) / anchor_h

    # Create centerness target. {
    lrtb_targets = tf.concat([left, right, top, bottom], axis=-1)
    valid_match = tf.greater(tf.reduce_min(lrtb_targets, -1), 0.0)

    # Centerness score.
    left_right = tf.concat([left, right], axis=-1)

    left_right = tf.where(tf.stack([valid_match, valid_match], -1),
                          left_right, tf.zeros_like(left_right))
    top_bottom = tf.concat([top, bottom], axis=-1)
    top_bottom = tf.where(tf.stack([valid_match, valid_match], -1),
                          top_bottom, tf.zeros_like(top_bottom))
    center_targets = tf.sqrt(
        (tf.reduce_min(left_right, -1) /
         (tf.reduce_max(left_right, -1) + EPSILON)) *
        (tf.reduce_min(top_bottom, -1) /
         (tf.reduce_max(top_bottom, -1) + EPSILON)))
    center_targets = tf.where(valid_match,
                              center_targets,
                              tf.zeros_like(center_targets))
    if weights:
      left *= weights[0]
      right *= weights[1]
      top *= weights[2]
      bottom *= weights[3]

    encoded_boxes_lrtb = tf.concat(
        [left, right, top, bottom],
        axis=-1)

    return encoded_boxes_lrtb, center_targets


def decode_boxes_lrtb(encoded_boxes_lrtb, anchors, weights=None):
  """Decode boxes.

  Args:
    encoded_boxes_lrtb: a tensor whose last dimension is 4 representing the
      coordinates of encoded boxes in left, right, top, bottom order.
    anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
      representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
    weights: None or a list of four float numbers used to scale coordinates.

  Returns:
    decoded_boxes_lrtb: a tensor whose shape is the same as `boxes` representing
      the decoded box targets in lrtb (=left,right,top,bottom) format. The box
      decoded box coordinates represent the left, right, top, and bottom
      distances from an anchor location to the four borders of the matched
      groundtruth bounding box.
  """
  if encoded_boxes_lrtb.shape[-1] != 4:
    raise ValueError(
        'encoded_boxes_lrtb.shape[-1] is {:d}, but must be 4.'
        .format(encoded_boxes_lrtb.shape[-1]))

  with tf.name_scope('decode_boxes_lrtb'):
    encoded_boxes_lrtb = tf.cast(encoded_boxes_lrtb, dtype=anchors.dtype)
    left = encoded_boxes_lrtb[..., 0:1]
    right = encoded_boxes_lrtb[..., 1:2]
    top = encoded_boxes_lrtb[..., 2:3]
    bottom = encoded_boxes_lrtb[..., 3:4]
    if weights:
      left /= weights[0]
      right /= weights[1]
      top /= weights[2]
      bottom /= weights[3]

    anchor_ymin = anchors[..., 0:1]
    anchor_xmin = anchors[..., 1:2]
    anchor_ymax = anchors[..., 2:3]
    anchor_xmax = anchors[..., 3:4]

    anchor_h = anchor_ymax - anchor_ymin
    anchor_w = anchor_xmax - anchor_xmin
    anchor_yc = anchor_ymin + 0.5 * anchor_h
    anchor_xc = anchor_xmin + 0.5 * anchor_w
    anchor_h += EPSILON
    anchor_w += EPSILON

    decoded_boxes_ymin = anchor_yc - top * anchor_h
    decoded_boxes_xmin = anchor_xc - left * anchor_w
    decoded_boxes_ymax = anchor_yc + bottom * anchor_h
    decoded_boxes_xmax = anchor_xc + right * anchor_w

    decoded_boxes_lrtb = tf.concat(
        [decoded_boxes_ymin, decoded_boxes_xmin,
         decoded_boxes_ymax, decoded_boxes_xmax],
        axis=-1)
    return decoded_boxes_lrtb


def filter_boxes(boxes, scores, image_shape, min_size_threshold):
  """Filter and remove boxes that are too small or fall outside the image.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    scores: a tensor whose shape is the same as tf.shape(boxes)[:-1]
      representing the original scores of the boxes.
    image_shape: a tensor whose shape is the same as, or `broadcastable` to
      `boxes` except the last dimension, which is 2, representing [height,
      width] of the scaled image.
    min_size_threshold: a float representing the minimal box size in each side
      (w.r.t. the scaled image). Boxes whose sides are smaller than it will be
      filtered out.

  Returns:
    filtered_boxes: a tensor whose shape is the same as `boxes` but with
      the position of the filtered boxes are filled with 0.
    filtered_scores: a tensor whose shape is the same as 'scores' but with
      the positinon of the filtered boxes filled with 0.
  """
  if boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[1] is {:d}, but must be 4.'.format(
        boxes.shape[-1]))

  with tf.name_scope('filter_boxes'):
    if isinstance(image_shape, list) or isinstance(image_shape, tuple):
      height, width = image_shape
    else:
      image_shape = tf.cast(image_shape, dtype=boxes.dtype)
      height = image_shape[..., 0]
      width = image_shape[..., 1]

    ymin = boxes[..., 0]
    xmin = boxes[..., 1]
    ymax = boxes[..., 2]
    xmax = boxes[..., 3]

    h = ymax - ymin + 1.0
    w = xmax - xmin + 1.0
    yc = ymin + 0.5 * h
    xc = xmin + 0.5 * w

    min_size = tf.cast(
        tf.math.maximum(min_size_threshold, 1.0), dtype=boxes.dtype)

    filtered_size_mask = tf.math.logical_and(
        tf.math.greater(h, min_size), tf.math.greater(w, min_size))
    filtered_center_mask = tf.logical_and(
        tf.math.logical_and(tf.math.greater(yc, 0.0), tf.math.less(yc, height)),
        tf.math.logical_and(tf.math.greater(xc, 0.0), tf.math.less(xc, width)))
    filtered_mask = tf.math.logical_and(filtered_size_mask,
                                        filtered_center_mask)

    filtered_scores = tf.where(filtered_mask, scores, tf.zeros_like(scores))
    filtered_boxes = tf.cast(
        tf.expand_dims(filtered_mask, axis=-1), dtype=boxes.dtype) * boxes

    return filtered_boxes, filtered_scores


def filter_boxes_by_scores(boxes, scores, min_score_threshold):
  """Filter and remove boxes whose scores are smaller than the threshold.

  Args:
    boxes: a tensor whose last dimension is 4 representing the coordinates of
      boxes in ymin, xmin, ymax, xmax order.
    scores: a tensor whose shape is the same as tf.shape(boxes)[:-1]
      representing the original scores of the boxes.
    min_score_threshold: a float representing the minimal box score threshold.
      Boxes whose score are smaller than it will be filtered out.

  Returns:
    filtered_boxes: a tensor whose shape is the same as `boxes` but with
      the position of the filtered boxes are filled with -1.
    filtered_scores: a tensor whose shape is the same as 'scores' but with
      the
  """
  if boxes.shape[-1] != 4:
    raise ValueError('boxes.shape[1] is {:d}, but must be 4.'.format(
        boxes.shape[-1]))

  with tf.name_scope('filter_boxes_by_scores'):
    filtered_mask = tf.math.greater(scores, min_score_threshold)
    filtered_scores = tf.where(filtered_mask, scores, -tf.ones_like(scores))
    filtered_boxes = tf.cast(
        tf.expand_dims(filtered_mask, axis=-1), dtype=boxes.dtype) * boxes

    return filtered_boxes, filtered_scores


def top_k_boxes(boxes, scores, k):
  """Sort and select top k boxes according to the scores.

  Args:
    boxes: a tensor of shape [batch_size, N, 4] representing the coordiante of
      the boxes. N is the number of boxes per image.
    scores: a tensor of shsape [batch_size, N] representing the socre of the
      boxes.
    k: an integer or a tensor indicating the top k number.

  Returns:
    selected_boxes: a tensor of shape [batch_size, k, 4] representing the
      selected top k box coordinates.
    selected_scores: a tensor of shape [batch_size, k] representing the selected
      top k box scores.
  """
  with tf.name_scope('top_k_boxes'):
    selected_scores, top_k_indices = tf.nn.top_k(scores, k=k, sorted=True)

    batch_size, _ = scores.get_shape().as_list()
    if batch_size == 1:
      selected_boxes = tf.squeeze(
          tf.gather(boxes, top_k_indices, axis=1), axis=1)
    else:
      top_k_indices_shape = tf.shape(top_k_indices)
      batch_indices = (
          tf.expand_dims(tf.range(top_k_indices_shape[0]), axis=-1) *
          tf.ones([1, top_k_indices_shape[-1]], dtype=tf.int32))
      gather_nd_indices = tf.stack([batch_indices, top_k_indices], axis=-1)
      selected_boxes = tf.gather_nd(boxes, gather_nd_indices)

    return selected_boxes, selected_scores


def bbox_overlap(boxes, gt_boxes):
  """Calculates the overlap between proposal and ground truth boxes.

  Some `gt_boxes` may have been padded.  The returned `iou` tensor for these
  boxes will be -1.

  Args:
    boxes: a tensor with a shape of [batch_size, N, 4]. N is the number of
      proposals before groundtruth assignment (e.g., rpn_post_nms_topn). The
      last dimension is the pixel coordinates in [ymin, xmin, ymax, xmax] form.
    gt_boxes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, 4]. This
      tensor might have paddings with a negative value.

  Returns:
    iou: a tensor with as a shape of [batch_size, N, MAX_NUM_INSTANCES].
  """
  with tf.name_scope('bbox_overlap'):
    bb_y_min, bb_x_min, bb_y_max, bb_x_max = tf.split(
        value=boxes, num_or_size_splits=4, axis=2)
    gt_y_min, gt_x_min, gt_y_max, gt_x_max = tf.split(
        value=gt_boxes, num_or_size_splits=4, axis=2)

    # Calculates the intersection area.
    i_xmin = tf.math.maximum(bb_x_min, tf.transpose(gt_x_min, [0, 2, 1]))
    i_xmax = tf.math.minimum(bb_x_max, tf.transpose(gt_x_max, [0, 2, 1]))
    i_ymin = tf.math.maximum(bb_y_min, tf.transpose(gt_y_min, [0, 2, 1]))
    i_ymax = tf.math.minimum(bb_y_max, tf.transpose(gt_y_max, [0, 2, 1]))
    i_area = tf.math.maximum((i_xmax - i_xmin), 0) * tf.math.maximum(
        (i_ymax - i_ymin), 0)

    # Calculates the union area.
    bb_area = (bb_y_max - bb_y_min) * (bb_x_max - bb_x_min)
    gt_area = (gt_y_max - gt_y_min) * (gt_x_max - gt_x_min)
    # Adds a small epsilon to avoid divide-by-zero.
    u_area = bb_area + tf.transpose(gt_area, [0, 2, 1]) - i_area + 1e-8

    # Calculates IoU.
    iou = i_area / u_area

    # Fills -1 for IoU entries between the padded ground truth boxes.
    gt_invalid_mask = tf.less(
        tf.reduce_max(gt_boxes, axis=-1, keepdims=True), 0.0)
    padding_mask = tf.logical_or(
        tf.zeros_like(bb_x_min, dtype=tf.bool),
        tf.transpose(gt_invalid_mask, [0, 2, 1]))
    iou = tf.where(padding_mask, -tf.ones_like(iou), iou)

    return iou


def get_non_empty_box_indices(boxes):
  """Get indices for non-empty boxes."""
  # Selects indices if box height or width is 0.
  height = boxes[:, 2] - boxes[:, 0]
  width = boxes[:, 3] - boxes[:, 1]
  indices = tf.where(
      tf.logical_and(tf.greater(height, 0), tf.greater(width, 0)))
  return indices[:, 0]