Spaces:
Runtime error
Runtime error
File size: 26,060 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility functions for bounding box processing."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf, tf_keras
EPSILON = 1e-8
BBOX_XFORM_CLIP = np.log(1000. / 16.)
def visualize_images_with_bounding_boxes(images, box_outputs, step,
summary_writer):
"""Records subset of evaluation images with bounding boxes."""
image_shape = tf.shape(images[0])
image_height = tf.cast(image_shape[0], tf.float32)
image_width = tf.cast(image_shape[1], tf.float32)
normalized_boxes = normalize_boxes(box_outputs, [image_height, image_width])
bounding_box_color = tf.constant([[1.0, 1.0, 0.0, 1.0]])
image_summary = tf.image.draw_bounding_boxes(images, normalized_boxes,
bounding_box_color)
with summary_writer.as_default():
tf.summary.image('bounding_box_summary', image_summary, step=step)
summary_writer.flush()
def yxyx_to_xywh(boxes):
"""Converts boxes from ymin, xmin, ymax, xmax to xmin, ymin, width, height.
Args:
boxes: a numpy array whose last dimension is 4 representing the coordinates
of boxes in ymin, xmin, ymax, xmax order.
Returns:
boxes: a numpy array whose shape is the same as `boxes` in new format.
Raises:
ValueError: If the last dimension of boxes is not 4.
"""
if boxes.shape[-1] != 4:
raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
boxes.shape[-1]))
boxes_ymin = boxes[..., 0]
boxes_xmin = boxes[..., 1]
boxes_width = boxes[..., 3] - boxes[..., 1]
boxes_height = boxes[..., 2] - boxes[..., 0]
new_boxes = np.stack([boxes_xmin, boxes_ymin, boxes_width, boxes_height],
axis=-1)
return new_boxes
def jitter_boxes(boxes, noise_scale=0.025):
"""Jitter the box coordinates by some noise distribution.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates of
boxes in ymin, xmin, ymax, xmax order.
noise_scale: a python float which specifies the magnitude of noise. The rule
of thumb is to set this between (0, 0.1]. The default value is found to
mimic the noisy detections best empirically.
Returns:
jittered_boxes: a tensor whose shape is the same as `boxes` representing
the jittered boxes.
Raises:
ValueError: If the last dimension of boxes is not 4.
"""
if boxes.shape[-1] != 4:
raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
boxes.shape[-1]))
with tf.name_scope('jitter_boxes'):
bbox_jitters = tf.random.normal(boxes.get_shape(), stddev=noise_scale)
ymin = boxes[..., 0:1]
xmin = boxes[..., 1:2]
ymax = boxes[..., 2:3]
xmax = boxes[..., 3:4]
width = xmax - xmin
height = ymax - ymin
new_center_x = (xmin + xmax) / 2.0 + bbox_jitters[..., 0:1] * width
new_center_y = (ymin + ymax) / 2.0 + bbox_jitters[..., 1:2] * height
new_width = width * tf.math.exp(bbox_jitters[..., 2:3])
new_height = height * tf.math.exp(bbox_jitters[..., 3:4])
jittered_boxes = tf.concat([
new_center_y - new_height * 0.5, new_center_x - new_width * 0.5,
new_center_y + new_height * 0.5, new_center_x + new_width * 0.5
],
axis=-1)
return jittered_boxes
def normalize_boxes(boxes, image_shape):
"""Converts boxes to the normalized coordinates.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates of
boxes in ymin, xmin, ymax, xmax order.
image_shape: a list of two integers, a two-element vector or a tensor such
that all but the last dimensions are `broadcastable` to `boxes`. The last
dimension is 2, which represents [height, width].
Returns:
normalized_boxes: a tensor whose shape is the same as `boxes` representing
the normalized boxes.
Raises:
ValueError: If the last dimension of boxes is not 4.
"""
if boxes.shape[-1] != 4:
raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
boxes.shape[-1]))
with tf.name_scope('normalize_boxes'):
if isinstance(image_shape, list) or isinstance(image_shape, tuple):
height, width = image_shape
else:
image_shape = tf.cast(image_shape, dtype=boxes.dtype)
height = image_shape[..., 0:1]
width = image_shape[..., 1:2]
ymin = boxes[..., 0:1] / height
xmin = boxes[..., 1:2] / width
ymax = boxes[..., 2:3] / height
xmax = boxes[..., 3:4] / width
normalized_boxes = tf.concat([ymin, xmin, ymax, xmax], axis=-1)
return normalized_boxes
def denormalize_boxes(boxes, image_shape):
"""Converts boxes normalized by [height, width] to pixel coordinates.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates of
boxes in ymin, xmin, ymax, xmax order.
image_shape: a list of two integers, a two-element vector or a tensor such
that all but the last dimensions are `broadcastable` to `boxes`. The last
dimension is 2, which represents [height, width].
Returns:
denormalized_boxes: a tensor whose shape is the same as `boxes` representing
the denormalized boxes.
Raises:
ValueError: If the last dimension of boxes is not 4.
"""
with tf.name_scope('denormalize_boxes'):
if isinstance(image_shape, list) or isinstance(image_shape, tuple):
height, width = image_shape
else:
image_shape = tf.cast(image_shape, dtype=boxes.dtype)
height, width = tf.split(image_shape, 2, axis=-1)
ymin, xmin, ymax, xmax = tf.split(boxes, 4, axis=-1)
ymin = ymin * height
xmin = xmin * width
ymax = ymax * height
xmax = xmax * width
denormalized_boxes = tf.concat([ymin, xmin, ymax, xmax], axis=-1)
return denormalized_boxes
def clip_boxes(boxes, image_shape):
"""Clips boxes to image boundaries.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates of
boxes in ymin, xmin, ymax, xmax order.
image_shape: a list of two integers, a two-element vector or a tensor such
that all but the last dimensions are `broadcastable` to `boxes`. The last
dimension is 2, which represents [height, width].
Returns:
clipped_boxes: a tensor whose shape is the same as `boxes` representing the
clipped boxes.
Raises:
ValueError: If the last dimension of boxes is not 4.
"""
if boxes.shape[-1] != 4:
raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
boxes.shape[-1]))
with tf.name_scope('clip_boxes'):
if isinstance(image_shape, list) or isinstance(image_shape, tuple):
height, width = image_shape
max_length = [height - 1.0, width - 1.0, height - 1.0, width - 1.0]
else:
image_shape = tf.cast(image_shape, dtype=boxes.dtype)
height, width = tf.unstack(image_shape, axis=-1)
max_length = tf.stack(
[height - 1.0, width - 1.0, height - 1.0, width - 1.0], axis=-1)
clipped_boxes = tf.math.maximum(tf.math.minimum(boxes, max_length), 0.0)
return clipped_boxes
def compute_outer_boxes(boxes, image_shape, scale=1.0):
"""Compute outer box encloses an object with a margin.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates of
boxes in ymin, xmin, ymax, xmax order.
image_shape: a list of two integers, a two-element vector or a tensor such
that all but the last dimensions are `broadcastable` to `boxes`. The last
dimension is 2, which represents [height, width].
scale: a float number specifying the scale of output outer boxes to input
`boxes`.
Returns:
outer_boxes: a tensor whose shape is the same as `boxes` representing the
outer boxes.
"""
if scale < 1.0:
raise ValueError(
'scale is {}, but outer box scale must be greater than 1.0.'.format(
scale))
centers_y = (boxes[..., 0] + boxes[..., 2]) / 2.0
centers_x = (boxes[..., 1] + boxes[..., 3]) / 2.0
box_height = (boxes[..., 2] - boxes[..., 0]) * scale
box_width = (boxes[..., 3] - boxes[..., 1]) * scale
outer_boxes = tf.stack([
centers_y - box_height / 2.0, centers_x - box_width / 2.0,
centers_y + box_height / 2.0, centers_x + box_width / 2.0
],
axis=1)
outer_boxes = clip_boxes(outer_boxes, image_shape)
return outer_boxes
def encode_boxes(boxes, anchors, weights=None):
"""Encode boxes to targets.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates of
boxes in ymin, xmin, ymax, xmax order.
anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
weights: None or a list of four float numbers used to scale coordinates.
Returns:
encoded_boxes: a tensor whose shape is the same as `boxes` representing the
encoded box targets.
Raises:
ValueError: If the last dimension of boxes is not 4.
"""
if boxes.shape[-1] != 4:
raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format(
boxes.shape[-1]))
with tf.name_scope('encode_boxes'):
boxes = tf.cast(boxes, dtype=anchors.dtype)
ymin = boxes[..., 0:1]
xmin = boxes[..., 1:2]
ymax = boxes[..., 2:3]
xmax = boxes[..., 3:4]
box_h = ymax - ymin + 1.0
box_w = xmax - xmin + 1.0
box_yc = ymin + 0.5 * box_h
box_xc = xmin + 0.5 * box_w
anchor_ymin = anchors[..., 0:1]
anchor_xmin = anchors[..., 1:2]
anchor_ymax = anchors[..., 2:3]
anchor_xmax = anchors[..., 3:4]
anchor_h = anchor_ymax - anchor_ymin + 1.0
anchor_w = anchor_xmax - anchor_xmin + 1.0
anchor_yc = anchor_ymin + 0.5 * anchor_h
anchor_xc = anchor_xmin + 0.5 * anchor_w
encoded_dy = (box_yc - anchor_yc) / anchor_h
encoded_dx = (box_xc - anchor_xc) / anchor_w
encoded_dh = tf.math.log(box_h / anchor_h)
encoded_dw = tf.math.log(box_w / anchor_w)
if weights:
encoded_dy *= weights[0]
encoded_dx *= weights[1]
encoded_dh *= weights[2]
encoded_dw *= weights[3]
encoded_boxes = tf.concat([encoded_dy, encoded_dx, encoded_dh, encoded_dw],
axis=-1)
return encoded_boxes
def decode_boxes(encoded_boxes, anchors, weights=None):
"""Decode boxes.
Args:
encoded_boxes: a tensor whose last dimension is 4 representing the
coordinates of encoded boxes in ymin, xmin, ymax, xmax order.
anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
weights: None or a list of four float numbers used to scale coordinates.
Returns:
encoded_boxes: a tensor whose shape is the same as `boxes` representing the
decoded box targets.
"""
if encoded_boxes.shape[-1] != 4:
raise ValueError('encoded_boxes.shape[-1] is {:d}, but must be 4.'.format(
encoded_boxes.shape[-1]))
with tf.name_scope('decode_boxes'):
encoded_boxes = tf.cast(encoded_boxes, dtype=anchors.dtype)
dy = encoded_boxes[..., 0:1]
dx = encoded_boxes[..., 1:2]
dh = encoded_boxes[..., 2:3]
dw = encoded_boxes[..., 3:4]
if weights:
dy /= weights[0]
dx /= weights[1]
dh /= weights[2]
dw /= weights[3]
dh = tf.math.minimum(dh, BBOX_XFORM_CLIP)
dw = tf.math.minimum(dw, BBOX_XFORM_CLIP)
anchor_ymin = anchors[..., 0:1]
anchor_xmin = anchors[..., 1:2]
anchor_ymax = anchors[..., 2:3]
anchor_xmax = anchors[..., 3:4]
anchor_h = anchor_ymax - anchor_ymin + 1.0
anchor_w = anchor_xmax - anchor_xmin + 1.0
anchor_yc = anchor_ymin + 0.5 * anchor_h
anchor_xc = anchor_xmin + 0.5 * anchor_w
decoded_boxes_yc = dy * anchor_h + anchor_yc
decoded_boxes_xc = dx * anchor_w + anchor_xc
decoded_boxes_h = tf.math.exp(dh) * anchor_h
decoded_boxes_w = tf.math.exp(dw) * anchor_w
decoded_boxes_ymin = decoded_boxes_yc - 0.5 * decoded_boxes_h
decoded_boxes_xmin = decoded_boxes_xc - 0.5 * decoded_boxes_w
decoded_boxes_ymax = decoded_boxes_ymin + decoded_boxes_h - 1.0
decoded_boxes_xmax = decoded_boxes_xmin + decoded_boxes_w - 1.0
decoded_boxes = tf.concat([
decoded_boxes_ymin, decoded_boxes_xmin, decoded_boxes_ymax,
decoded_boxes_xmax
],
axis=-1)
return decoded_boxes
def encode_boxes_lrtb(boxes, anchors, weights=None):
"""Encode boxes to targets on lrtb (=left,right,top,bottom) format.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates
of boxes in ymin, xmin, ymax, xmax order.
anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
weights: None or a list of four float numbers used to scale coordinates.
Returns:
encoded_boxes_lrtb: a tensor whose shape is the same as `boxes` representing
the encoded box targets. The box targets encode the left, right, top,
bottom distances from an anchor location to the four borders of the
matched groundtruth bounding box.
center_targets: centerness targets defined by the left, right, top, and
bottom distance targets. The centerness is defined as the deviation of the
anchor location from the groundtruth object center. Formally, centerness =
sqrt(min(left, right)/max(left, right)*min(top, bottom)/max(top, bottom)).
Raises:
ValueError: If the last dimension of boxes is not 4.
"""
if boxes.shape[-1] != 4:
raise ValueError(
'boxes.shape[-1] is {:d}, but must be 4.'.format(boxes.shape[-1]))
with tf.name_scope('encode_boxes_lrtb'):
boxes = tf.cast(boxes, dtype=anchors.dtype)
ymin = boxes[..., 0:1]
xmin = boxes[..., 1:2]
ymax = boxes[..., 2:3]
xmax = boxes[..., 3:4]
# box_h = ymax - ymin + 1.0
# box_w = xmax - xmin + 1.0
box_h = ymax - ymin
box_w = xmax - xmin
anchor_ymin = anchors[..., 0:1]
anchor_xmin = anchors[..., 1:2]
anchor_ymax = anchors[..., 2:3]
anchor_xmax = anchors[..., 3:4]
# anchor_h = anchor_ymax - anchor_ymin + 1.0
# anchor_w = anchor_xmax - anchor_xmin + 1.0
anchor_h = anchor_ymax - anchor_ymin
anchor_w = anchor_xmax - anchor_xmin
anchor_yc = anchor_ymin + 0.5 * anchor_h
anchor_xc = anchor_xmin + 0.5 * anchor_w
box_h += EPSILON
box_w += EPSILON
anchor_h += EPSILON
anchor_w += EPSILON
left = (anchor_xc - xmin) / anchor_w
right = (xmax - anchor_xc) / anchor_w
top = (anchor_yc - ymin) / anchor_h
bottom = (ymax - anchor_yc) / anchor_h
# Create centerness target. {
lrtb_targets = tf.concat([left, right, top, bottom], axis=-1)
valid_match = tf.greater(tf.reduce_min(lrtb_targets, -1), 0.0)
# Centerness score.
left_right = tf.concat([left, right], axis=-1)
left_right = tf.where(tf.stack([valid_match, valid_match], -1),
left_right, tf.zeros_like(left_right))
top_bottom = tf.concat([top, bottom], axis=-1)
top_bottom = tf.where(tf.stack([valid_match, valid_match], -1),
top_bottom, tf.zeros_like(top_bottom))
center_targets = tf.sqrt(
(tf.reduce_min(left_right, -1) /
(tf.reduce_max(left_right, -1) + EPSILON)) *
(tf.reduce_min(top_bottom, -1) /
(tf.reduce_max(top_bottom, -1) + EPSILON)))
center_targets = tf.where(valid_match,
center_targets,
tf.zeros_like(center_targets))
if weights:
left *= weights[0]
right *= weights[1]
top *= weights[2]
bottom *= weights[3]
encoded_boxes_lrtb = tf.concat(
[left, right, top, bottom],
axis=-1)
return encoded_boxes_lrtb, center_targets
def decode_boxes_lrtb(encoded_boxes_lrtb, anchors, weights=None):
"""Decode boxes.
Args:
encoded_boxes_lrtb: a tensor whose last dimension is 4 representing the
coordinates of encoded boxes in left, right, top, bottom order.
anchors: a tensor whose shape is the same as, or `broadcastable` to `boxes`,
representing the coordinates of anchors in ymin, xmin, ymax, xmax order.
weights: None or a list of four float numbers used to scale coordinates.
Returns:
decoded_boxes_lrtb: a tensor whose shape is the same as `boxes` representing
the decoded box targets in lrtb (=left,right,top,bottom) format. The box
decoded box coordinates represent the left, right, top, and bottom
distances from an anchor location to the four borders of the matched
groundtruth bounding box.
"""
if encoded_boxes_lrtb.shape[-1] != 4:
raise ValueError(
'encoded_boxes_lrtb.shape[-1] is {:d}, but must be 4.'
.format(encoded_boxes_lrtb.shape[-1]))
with tf.name_scope('decode_boxes_lrtb'):
encoded_boxes_lrtb = tf.cast(encoded_boxes_lrtb, dtype=anchors.dtype)
left = encoded_boxes_lrtb[..., 0:1]
right = encoded_boxes_lrtb[..., 1:2]
top = encoded_boxes_lrtb[..., 2:3]
bottom = encoded_boxes_lrtb[..., 3:4]
if weights:
left /= weights[0]
right /= weights[1]
top /= weights[2]
bottom /= weights[3]
anchor_ymin = anchors[..., 0:1]
anchor_xmin = anchors[..., 1:2]
anchor_ymax = anchors[..., 2:3]
anchor_xmax = anchors[..., 3:4]
anchor_h = anchor_ymax - anchor_ymin
anchor_w = anchor_xmax - anchor_xmin
anchor_yc = anchor_ymin + 0.5 * anchor_h
anchor_xc = anchor_xmin + 0.5 * anchor_w
anchor_h += EPSILON
anchor_w += EPSILON
decoded_boxes_ymin = anchor_yc - top * anchor_h
decoded_boxes_xmin = anchor_xc - left * anchor_w
decoded_boxes_ymax = anchor_yc + bottom * anchor_h
decoded_boxes_xmax = anchor_xc + right * anchor_w
decoded_boxes_lrtb = tf.concat(
[decoded_boxes_ymin, decoded_boxes_xmin,
decoded_boxes_ymax, decoded_boxes_xmax],
axis=-1)
return decoded_boxes_lrtb
def filter_boxes(boxes, scores, image_shape, min_size_threshold):
"""Filter and remove boxes that are too small or fall outside the image.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates of
boxes in ymin, xmin, ymax, xmax order.
scores: a tensor whose shape is the same as tf.shape(boxes)[:-1]
representing the original scores of the boxes.
image_shape: a tensor whose shape is the same as, or `broadcastable` to
`boxes` except the last dimension, which is 2, representing [height,
width] of the scaled image.
min_size_threshold: a float representing the minimal box size in each side
(w.r.t. the scaled image). Boxes whose sides are smaller than it will be
filtered out.
Returns:
filtered_boxes: a tensor whose shape is the same as `boxes` but with
the position of the filtered boxes are filled with 0.
filtered_scores: a tensor whose shape is the same as 'scores' but with
the positinon of the filtered boxes filled with 0.
"""
if boxes.shape[-1] != 4:
raise ValueError('boxes.shape[1] is {:d}, but must be 4.'.format(
boxes.shape[-1]))
with tf.name_scope('filter_boxes'):
if isinstance(image_shape, list) or isinstance(image_shape, tuple):
height, width = image_shape
else:
image_shape = tf.cast(image_shape, dtype=boxes.dtype)
height = image_shape[..., 0]
width = image_shape[..., 1]
ymin = boxes[..., 0]
xmin = boxes[..., 1]
ymax = boxes[..., 2]
xmax = boxes[..., 3]
h = ymax - ymin + 1.0
w = xmax - xmin + 1.0
yc = ymin + 0.5 * h
xc = xmin + 0.5 * w
min_size = tf.cast(
tf.math.maximum(min_size_threshold, 1.0), dtype=boxes.dtype)
filtered_size_mask = tf.math.logical_and(
tf.math.greater(h, min_size), tf.math.greater(w, min_size))
filtered_center_mask = tf.logical_and(
tf.math.logical_and(tf.math.greater(yc, 0.0), tf.math.less(yc, height)),
tf.math.logical_and(tf.math.greater(xc, 0.0), tf.math.less(xc, width)))
filtered_mask = tf.math.logical_and(filtered_size_mask,
filtered_center_mask)
filtered_scores = tf.where(filtered_mask, scores, tf.zeros_like(scores))
filtered_boxes = tf.cast(
tf.expand_dims(filtered_mask, axis=-1), dtype=boxes.dtype) * boxes
return filtered_boxes, filtered_scores
def filter_boxes_by_scores(boxes, scores, min_score_threshold):
"""Filter and remove boxes whose scores are smaller than the threshold.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates of
boxes in ymin, xmin, ymax, xmax order.
scores: a tensor whose shape is the same as tf.shape(boxes)[:-1]
representing the original scores of the boxes.
min_score_threshold: a float representing the minimal box score threshold.
Boxes whose score are smaller than it will be filtered out.
Returns:
filtered_boxes: a tensor whose shape is the same as `boxes` but with
the position of the filtered boxes are filled with -1.
filtered_scores: a tensor whose shape is the same as 'scores' but with
the
"""
if boxes.shape[-1] != 4:
raise ValueError('boxes.shape[1] is {:d}, but must be 4.'.format(
boxes.shape[-1]))
with tf.name_scope('filter_boxes_by_scores'):
filtered_mask = tf.math.greater(scores, min_score_threshold)
filtered_scores = tf.where(filtered_mask, scores, -tf.ones_like(scores))
filtered_boxes = tf.cast(
tf.expand_dims(filtered_mask, axis=-1), dtype=boxes.dtype) * boxes
return filtered_boxes, filtered_scores
def top_k_boxes(boxes, scores, k):
"""Sort and select top k boxes according to the scores.
Args:
boxes: a tensor of shape [batch_size, N, 4] representing the coordiante of
the boxes. N is the number of boxes per image.
scores: a tensor of shsape [batch_size, N] representing the socre of the
boxes.
k: an integer or a tensor indicating the top k number.
Returns:
selected_boxes: a tensor of shape [batch_size, k, 4] representing the
selected top k box coordinates.
selected_scores: a tensor of shape [batch_size, k] representing the selected
top k box scores.
"""
with tf.name_scope('top_k_boxes'):
selected_scores, top_k_indices = tf.nn.top_k(scores, k=k, sorted=True)
batch_size, _ = scores.get_shape().as_list()
if batch_size == 1:
selected_boxes = tf.squeeze(
tf.gather(boxes, top_k_indices, axis=1), axis=1)
else:
top_k_indices_shape = tf.shape(top_k_indices)
batch_indices = (
tf.expand_dims(tf.range(top_k_indices_shape[0]), axis=-1) *
tf.ones([1, top_k_indices_shape[-1]], dtype=tf.int32))
gather_nd_indices = tf.stack([batch_indices, top_k_indices], axis=-1)
selected_boxes = tf.gather_nd(boxes, gather_nd_indices)
return selected_boxes, selected_scores
def bbox_overlap(boxes, gt_boxes):
"""Calculates the overlap between proposal and ground truth boxes.
Some `gt_boxes` may have been padded. The returned `iou` tensor for these
boxes will be -1.
Args:
boxes: a tensor with a shape of [batch_size, N, 4]. N is the number of
proposals before groundtruth assignment (e.g., rpn_post_nms_topn). The
last dimension is the pixel coordinates in [ymin, xmin, ymax, xmax] form.
gt_boxes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, 4]. This
tensor might have paddings with a negative value.
Returns:
iou: a tensor with as a shape of [batch_size, N, MAX_NUM_INSTANCES].
"""
with tf.name_scope('bbox_overlap'):
bb_y_min, bb_x_min, bb_y_max, bb_x_max = tf.split(
value=boxes, num_or_size_splits=4, axis=2)
gt_y_min, gt_x_min, gt_y_max, gt_x_max = tf.split(
value=gt_boxes, num_or_size_splits=4, axis=2)
# Calculates the intersection area.
i_xmin = tf.math.maximum(bb_x_min, tf.transpose(gt_x_min, [0, 2, 1]))
i_xmax = tf.math.minimum(bb_x_max, tf.transpose(gt_x_max, [0, 2, 1]))
i_ymin = tf.math.maximum(bb_y_min, tf.transpose(gt_y_min, [0, 2, 1]))
i_ymax = tf.math.minimum(bb_y_max, tf.transpose(gt_y_max, [0, 2, 1]))
i_area = tf.math.maximum((i_xmax - i_xmin), 0) * tf.math.maximum(
(i_ymax - i_ymin), 0)
# Calculates the union area.
bb_area = (bb_y_max - bb_y_min) * (bb_x_max - bb_x_min)
gt_area = (gt_y_max - gt_y_min) * (gt_x_max - gt_x_min)
# Adds a small epsilon to avoid divide-by-zero.
u_area = bb_area + tf.transpose(gt_area, [0, 2, 1]) - i_area + 1e-8
# Calculates IoU.
iou = i_area / u_area
# Fills -1 for IoU entries between the padded ground truth boxes.
gt_invalid_mask = tf.less(
tf.reduce_max(gt_boxes, axis=-1, keepdims=True), 0.0)
padding_mask = tf.logical_or(
tf.zeros_like(bb_x_min, dtype=tf.bool),
tf.transpose(gt_invalid_mask, [0, 2, 1]))
iou = tf.where(padding_mask, -tf.ones_like(iou), iou)
return iou
def get_non_empty_box_indices(boxes):
"""Get indices for non-empty boxes."""
# Selects indices if box height or width is 0.
height = boxes[:, 2] - boxes[:, 0]
width = boxes[:, 3] - boxes[:, 1]
indices = tf.where(
tf.logical_and(tf.greater(height, 0), tf.greater(width, 0)))
return indices[:, 0]
|