Spaces:
Runtime error
Runtime error
File size: 11,734 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model input pipelines."""
import tensorflow as tf, tf_keras
def decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.io.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def single_file_dataset(input_file, name_to_features, num_samples=None):
"""Creates a single-file dataset to be passed for BERT custom training."""
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if num_samples:
d = d.take(num_samples)
d = d.map(
lambda record: decode_record(record, name_to_features),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
# When `input_file` is a path to a single file or a list
# containing a single path, disable auto sharding so that
# same input file is sent to all workers.
if isinstance(input_file, str) or len(input_file) == 1:
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = (
tf.data.experimental.AutoShardPolicy.OFF)
d = d.with_options(options)
return d
def create_pretrain_dataset(input_patterns,
seq_length,
max_predictions_per_seq,
batch_size,
is_training=True,
input_pipeline_context=None,
use_next_sentence_label=True,
use_position_id=False,
output_fake_labels=True):
"""Creates input dataset from (tf)records files for pretraining."""
name_to_features = {
'input_ids':
tf.io.FixedLenFeature([seq_length], tf.int64),
'input_mask':
tf.io.FixedLenFeature([seq_length], tf.int64),
'segment_ids':
tf.io.FixedLenFeature([seq_length], tf.int64),
'masked_lm_positions':
tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
'masked_lm_ids':
tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
'masked_lm_weights':
tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32),
}
if use_next_sentence_label:
name_to_features['next_sentence_labels'] = tf.io.FixedLenFeature([1],
tf.int64)
if use_position_id:
name_to_features['position_ids'] = tf.io.FixedLenFeature([seq_length],
tf.int64)
for input_pattern in input_patterns:
if not tf.io.gfile.glob(input_pattern):
raise ValueError('%s does not match any files.' % input_pattern)
dataset = tf.data.Dataset.list_files(input_patterns, shuffle=is_training)
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
if is_training:
dataset = dataset.repeat()
# We set shuffle buffer to exactly match total number of
# training files to ensure that training data is well shuffled.
input_files = []
for input_pattern in input_patterns:
input_files.extend(tf.io.gfile.glob(input_pattern))
dataset = dataset.shuffle(len(input_files))
# In parallel, create tf record dataset for each train files.
# cycle_length = 8 means that up to 8 files will be read and deserialized in
# parallel. You may want to increase this number if you have a large number of
# CPU cores.
dataset = dataset.interleave(
tf.data.TFRecordDataset,
cycle_length=8,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
if is_training:
dataset = dataset.shuffle(100)
decode_fn = lambda record: decode_record(record, name_to_features)
dataset = dataset.map(
decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
def _select_data_from_record(record):
"""Filter out features to use for pretraining."""
x = {
'input_word_ids': record['input_ids'],
'input_mask': record['input_mask'],
'input_type_ids': record['segment_ids'],
'masked_lm_positions': record['masked_lm_positions'],
'masked_lm_ids': record['masked_lm_ids'],
'masked_lm_weights': record['masked_lm_weights'],
}
if use_next_sentence_label:
x['next_sentence_labels'] = record['next_sentence_labels']
if use_position_id:
x['position_ids'] = record['position_ids']
# TODO(hongkuny): Remove the fake labels after migrating bert pretraining.
if output_fake_labels:
return (x, record['masked_lm_weights'])
else:
return x
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=is_training)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def create_classifier_dataset(file_path,
seq_length,
batch_size,
is_training=True,
input_pipeline_context=None,
label_type=tf.int64,
include_sample_weights=False,
num_samples=None):
"""Creates input dataset from (tf)records files for train/eval."""
name_to_features = {
'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'label_ids': tf.io.FixedLenFeature([], label_type),
}
if include_sample_weights:
name_to_features['weight'] = tf.io.FixedLenFeature([], tf.float32)
dataset = single_file_dataset(file_path, name_to_features,
num_samples=num_samples)
# The dataset is always sharded by number of hosts.
# num_input_pipelines is the number of hosts rather than number of cores.
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
def _select_data_from_record(record):
x = {
'input_word_ids': record['input_ids'],
'input_mask': record['input_mask'],
'input_type_ids': record['segment_ids']
}
y = record['label_ids']
if include_sample_weights:
w = record['weight']
return (x, y, w)
return (x, y)
if is_training:
dataset = dataset.shuffle(100)
dataset = dataset.repeat()
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=is_training)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def create_squad_dataset(file_path,
seq_length,
batch_size,
is_training=True,
input_pipeline_context=None):
"""Creates input dataset from (tf)records files for train/eval."""
name_to_features = {
'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
}
if is_training:
name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64)
name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64)
else:
name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64)
dataset = single_file_dataset(file_path, name_to_features)
# The dataset is always sharded by number of hosts.
# num_input_pipelines is the number of hosts rather than number of cores.
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
def _select_data_from_record(record):
"""Dispatches record to features and labels."""
x, y = {}, {}
for name, tensor in record.items():
if name in ('start_positions', 'end_positions'):
y[name] = tensor
elif name == 'input_ids':
x['input_word_ids'] = tensor
elif name == 'segment_ids':
x['input_type_ids'] = tensor
else:
x[name] = tensor
return (x, y)
if is_training:
dataset = dataset.shuffle(100)
dataset = dataset.repeat()
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def create_retrieval_dataset(file_path,
seq_length,
batch_size,
input_pipeline_context=None):
"""Creates input dataset from (tf)records files for scoring."""
name_to_features = {
'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'example_id': tf.io.FixedLenFeature([1], tf.int64),
}
dataset = single_file_dataset(file_path, name_to_features)
# The dataset is always sharded by number of hosts.
# num_input_pipelines is the number of hosts rather than number of cores.
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
def _select_data_from_record(record):
x = {
'input_word_ids': record['input_ids'],
'input_mask': record['input_mask'],
'input_type_ids': record['segment_ids']
}
y = record['example_id']
return (x, y)
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=False)
def _pad_to_batch(x, y):
cur_size = tf.shape(y)[0]
pad_size = batch_size - cur_size
pad_ids = tf.zeros(shape=[pad_size, seq_length], dtype=tf.int32)
for key in ('input_word_ids', 'input_mask', 'input_type_ids'):
x[key] = tf.concat([x[key], pad_ids], axis=0)
pad_labels = -tf.ones(shape=[pad_size, 1], dtype=tf.int32)
y = tf.concat([y, pad_labels], axis=0)
return x, y
dataset = dataset.map(
_pad_to_batch,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
|