Spaces:
Runtime error
Runtime error
File size: 3,362 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for third_party.tensorflow_models.official.nlp.data.classifier_data_lib."""
import os
import tempfile
from absl.testing import parameterized
import tensorflow as tf, tf_keras
import tensorflow_datasets as tfds
from official.nlp.data import classifier_data_lib
from official.nlp.tools import tokenization
def decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
return tf.io.parse_single_example(record, name_to_features)
class BertClassifierLibTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(BertClassifierLibTest, self).setUp()
self.model_dir = self.get_temp_dir()
self.processors = {
"CB": classifier_data_lib.CBProcessor,
"SUPERGLUE-RTE": classifier_data_lib.SuperGLUERTEProcessor,
"BOOLQ": classifier_data_lib.BoolQProcessor,
"WIC": classifier_data_lib.WiCProcessor,
}
vocab_tokens = [
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
"##ing", ","
]
with tempfile.NamedTemporaryFile(delete=False) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens
]).encode("utf-8"))
vocab_file = vocab_writer.name
self.tokenizer = tokenization.FullTokenizer(vocab_file)
@parameterized.parameters(
{"task_type": "CB"},
{"task_type": "BOOLQ"},
{"task_type": "SUPERGLUE-RTE"},
{"task_type": "WIC"},
)
def test_generate_dataset_from_tfds_processor(self, task_type):
with tfds.testing.mock_data(num_examples=5):
output_path = os.path.join(self.model_dir, task_type)
processor = self.processors[task_type]()
classifier_data_lib.generate_tf_record_from_data_file(
processor,
None,
self.tokenizer,
train_data_output_path=output_path,
eval_data_output_path=output_path,
test_data_output_path=output_path)
files = tf.io.gfile.glob(output_path)
self.assertNotEmpty(files)
train_dataset = tf.data.TFRecordDataset(output_path)
seq_length = 128
label_type = tf.int64
name_to_features = {
"input_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.io.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.io.FixedLenFeature([], label_type),
}
train_dataset = train_dataset.map(
lambda record: decode_record(record, name_to_features))
# If data is retrieved without error, then all requirements
# including data type/shapes are met.
_ = next(iter(train_dataset))
if __name__ == "__main__":
tf.test.main()
|