File size: 23,370 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Create masked LM/next sentence masked_lm TF examples for BERT."""

import collections
import itertools
import random

# Import libraries
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf, tf_keras

from official.nlp.tools import tokenization

FLAGS = flags.FLAGS

flags.DEFINE_string("input_file", None,
                    "Input raw text file (or comma-separated list of files).")

flags.DEFINE_string(
    "output_file", None,
    "Output TF example file (or comma-separated list of files).")

flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_bool(
    "do_whole_word_mask", False,
    "Whether to use whole word masking rather than per-WordPiece masking.")

flags.DEFINE_integer(
    "max_ngram_size", None,
    "Mask contiguous whole words (n-grams) of up to `max_ngram_size` using a "
    "weighting scheme to favor shorter n-grams. "
    "Note: `--do_whole_word_mask=True` must also be set when n-gram masking.")

flags.DEFINE_bool(
    "gzip_compress", False,
    "Whether to use `GZIP` compress option to get compressed TFRecord files.")

flags.DEFINE_bool(
    "use_v2_feature_names", False,
    "Whether to use the feature names consistent with the models.")

flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.")

flags.DEFINE_integer("max_predictions_per_seq", 20,
                     "Maximum number of masked LM predictions per sequence.")

flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.")

flags.DEFINE_integer(
    "dupe_factor", 10,
    "Number of times to duplicate the input data (with different masks).")

flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.")

flags.DEFINE_float(
    "short_seq_prob", 0.1,
    "Probability of creating sequences which are shorter than the "
    "maximum length.")


class TrainingInstance(object):
  """A single training instance (sentence pair)."""

  def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels,
               is_random_next):
    self.tokens = tokens
    self.segment_ids = segment_ids
    self.is_random_next = is_random_next
    self.masked_lm_positions = masked_lm_positions
    self.masked_lm_labels = masked_lm_labels

  def __str__(self):
    s = ""
    s += "tokens: %s\n" % (" ".join(
        [tokenization.printable_text(x) for x in self.tokens]))
    s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids]))
    s += "is_random_next: %s\n" % self.is_random_next
    s += "masked_lm_positions: %s\n" % (" ".join(
        [str(x) for x in self.masked_lm_positions]))
    s += "masked_lm_labels: %s\n" % (" ".join(
        [tokenization.printable_text(x) for x in self.masked_lm_labels]))
    s += "\n"
    return s

  def __repr__(self):
    return self.__str__()


def write_instance_to_example_files(instances, tokenizer, max_seq_length,
                                    max_predictions_per_seq, output_files,
                                    gzip_compress, use_v2_feature_names):
  """Creates TF example files from `TrainingInstance`s."""
  writers = []
  for output_file in output_files:
    writers.append(
        tf.io.TFRecordWriter(
            output_file, options="GZIP" if gzip_compress else ""))

  writer_index = 0

  total_written = 0
  for (inst_index, instance) in enumerate(instances):
    input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
    input_mask = [1] * len(input_ids)
    segment_ids = list(instance.segment_ids)
    assert len(input_ids) <= max_seq_length

    while len(input_ids) < max_seq_length:
      input_ids.append(0)
      input_mask.append(0)
      segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    masked_lm_positions = list(instance.masked_lm_positions)
    masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels)
    masked_lm_weights = [1.0] * len(masked_lm_ids)

    while len(masked_lm_positions) < max_predictions_per_seq:
      masked_lm_positions.append(0)
      masked_lm_ids.append(0)
      masked_lm_weights.append(0.0)

    next_sentence_label = 1 if instance.is_random_next else 0

    features = collections.OrderedDict()
    if use_v2_feature_names:
      features["input_word_ids"] = create_int_feature(input_ids)
      features["input_type_ids"] = create_int_feature(segment_ids)
    else:
      features["input_ids"] = create_int_feature(input_ids)
      features["segment_ids"] = create_int_feature(segment_ids)

    features["input_mask"] = create_int_feature(input_mask)
    features["masked_lm_positions"] = create_int_feature(masked_lm_positions)
    features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
    features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
    features["next_sentence_labels"] = create_int_feature([next_sentence_label])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))

    writers[writer_index].write(tf_example.SerializeToString())
    writer_index = (writer_index + 1) % len(writers)

    total_written += 1

    if inst_index < 20:
      logging.info("*** Example ***")
      logging.info("tokens: %s", " ".join(
          [tokenization.printable_text(x) for x in instance.tokens]))

      for feature_name in features.keys():
        feature = features[feature_name]
        values = []
        if feature.int64_list.value:
          values = feature.int64_list.value
        elif feature.float_list.value:
          values = feature.float_list.value
        logging.info("%s: %s", feature_name, " ".join([str(x) for x in values]))

  for writer in writers:
    writer.close()

  logging.info("Wrote %d total instances", total_written)


def create_int_feature(values):
  feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
  return feature


def create_float_feature(values):
  feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
  return feature


def create_training_instances(input_files,
                              tokenizer,
                              max_seq_length,
                              dupe_factor,
                              short_seq_prob,
                              masked_lm_prob,
                              max_predictions_per_seq,
                              rng,
                              do_whole_word_mask=False,
                              max_ngram_size=None):
  """Create `TrainingInstance`s from raw text."""
  all_documents = [[]]

  # Input file format:
  # (1) One sentence per line. These should ideally be actual sentences, not
  # entire paragraphs or arbitrary spans of text. (Because we use the
  # sentence boundaries for the "next sentence prediction" task).
  # (2) Blank lines between documents. Document boundaries are needed so
  # that the "next sentence prediction" task doesn't span between documents.
  for input_file in input_files:
    with tf.io.gfile.GFile(input_file, "rb") as reader:
      while True:
        line = tokenization.convert_to_unicode(reader.readline())
        if not line:
          break
        line = line.strip()

        # Empty lines are used as document delimiters
        if not line:
          all_documents.append([])
        tokens = tokenizer.tokenize(line)
        if tokens:
          all_documents[-1].append(tokens)

  # Remove empty documents
  all_documents = [x for x in all_documents if x]
  rng.shuffle(all_documents)

  vocab_words = list(tokenizer.vocab.keys())
  instances = []
  for _ in range(dupe_factor):
    for document_index in range(len(all_documents)):
      instances.extend(
          create_instances_from_document(
              all_documents, document_index, max_seq_length, short_seq_prob,
              masked_lm_prob, max_predictions_per_seq, vocab_words, rng,
              do_whole_word_mask, max_ngram_size))

  rng.shuffle(instances)
  return instances


def create_instances_from_document(
    all_documents, document_index, max_seq_length, short_seq_prob,
    masked_lm_prob, max_predictions_per_seq, vocab_words, rng,
    do_whole_word_mask=False,
    max_ngram_size=None):
  """Creates `TrainingInstance`s for a single document."""
  document = all_documents[document_index]

  # Account for [CLS], [SEP], [SEP]
  max_num_tokens = max_seq_length - 3

  # We *usually* want to fill up the entire sequence since we are padding
  # to `max_seq_length` anyways, so short sequences are generally wasted
  # computation. However, we *sometimes*
  # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
  # sequences to minimize the mismatch between pre-training and fine-tuning.
  # The `target_seq_length` is just a rough target however, whereas
  # `max_seq_length` is a hard limit.
  target_seq_length = max_num_tokens
  if rng.random() < short_seq_prob:
    target_seq_length = rng.randint(2, max_num_tokens)

  # We DON'T just concatenate all of the tokens from a document into a long
  # sequence and choose an arbitrary split point because this would make the
  # next sentence prediction task too easy. Instead, we split the input into
  # segments "A" and "B" based on the actual "sentences" provided by the user
  # input.
  instances = []
  current_chunk = []
  current_length = 0
  i = 0
  while i < len(document):
    segment = document[i]
    current_chunk.append(segment)
    current_length += len(segment)
    if i == len(document) - 1 or current_length >= target_seq_length:
      if current_chunk:
        # `a_end` is how many segments from `current_chunk` go into the `A`
        # (first) sentence.
        a_end = 1
        if len(current_chunk) >= 2:
          a_end = rng.randint(1, len(current_chunk) - 1)

        tokens_a = []
        for j in range(a_end):
          tokens_a.extend(current_chunk[j])

        tokens_b = []
        # Random next
        is_random_next = False
        if len(current_chunk) == 1 or rng.random() < 0.5:
          is_random_next = True
          target_b_length = target_seq_length - len(tokens_a)

          # This should rarely go for more than one iteration for large
          # corpora. However, just to be careful, we try to make sure that
          # the random document is not the same as the document
          # we're processing.
          for _ in range(10):
            random_document_index = rng.randint(0, len(all_documents) - 1)
            if random_document_index != document_index:
              break

          random_document = all_documents[random_document_index]
          random_start = rng.randint(0, len(random_document) - 1)
          for j in range(random_start, len(random_document)):
            tokens_b.extend(random_document[j])
            if len(tokens_b) >= target_b_length:
              break
          # We didn't actually use these segments so we "put them back" so
          # they don't go to waste.
          num_unused_segments = len(current_chunk) - a_end
          i -= num_unused_segments
        # Actual next
        else:
          is_random_next = False
          for j in range(a_end, len(current_chunk)):
            tokens_b.extend(current_chunk[j])
        truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)

        assert len(tokens_a) >= 1
        assert len(tokens_b) >= 1

        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
          tokens.append(token)
          segment_ids.append(0)

        tokens.append("[SEP]")
        segment_ids.append(0)

        for token in tokens_b:
          tokens.append(token)
          segment_ids.append(1)
        tokens.append("[SEP]")
        segment_ids.append(1)

        (tokens, masked_lm_positions,
         masked_lm_labels) = create_masked_lm_predictions(
             tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng,
             do_whole_word_mask, max_ngram_size)
        instance = TrainingInstance(
            tokens=tokens,
            segment_ids=segment_ids,
            is_random_next=is_random_next,
            masked_lm_positions=masked_lm_positions,
            masked_lm_labels=masked_lm_labels)
        instances.append(instance)
      current_chunk = []
      current_length = 0
    i += 1

  return instances


MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
                                          ["index", "label"])

# A _Gram is a [half-open) interval of token indices which form a word.
# E.g.,
#   words:  ["The", "doghouse"]
#   tokens: ["The", "dog", "##house"]
#   grams:  [(0,1), (1,3)]
_Gram = collections.namedtuple("_Gram", ["begin", "end"])


def _window(iterable, size):
  """Helper to create a sliding window iterator with a given size.

  E.g.,
    input = [1, 2, 3, 4]
    _window(input, 1) => [1], [2], [3], [4]
    _window(input, 2) => [1, 2], [2, 3], [3, 4]
    _window(input, 3) => [1, 2, 3], [2, 3, 4]
    _window(input, 4) => [1, 2, 3, 4]
    _window(input, 5) => None

  Args:
    iterable: elements to iterate over.
    size: size of the window.

  Yields:
    Elements of `iterable` batched into a sliding window of length `size`.
  """
  i = iter(iterable)
  window = []
  try:
    for e in range(0, size):
      window.append(next(i))
    yield window
  except StopIteration:
    # handle the case where iterable's length is less than the window size.
    return
  for e in i:
    window = window[1:] + [e]
    yield window


def _contiguous(sorted_grams):
  """Test whether a sequence of grams is contiguous.

  Args:
    sorted_grams: _Grams which are sorted in increasing order.
  Returns:
    True if `sorted_grams` are touching each other.

  E.g.,
    _contiguous([(1, 4), (4, 5), (5, 10)]) == True
    _contiguous([(1, 2), (4, 5)]) == False
  """
  for a, b in _window(sorted_grams, 2):
    if a.end != b.begin:
      return False
  return True


def _masking_ngrams(grams, max_ngram_size, max_masked_tokens, rng):
  """Create a list of masking {1, ..., n}-grams from a list of one-grams.

  This is an extention of 'whole word masking' to mask multiple, contiguous
  words such as (e.g., "the red boat").

  Each input gram represents the token indices of a single word,
     words:  ["the", "red", "boat"]
     tokens: ["the", "red", "boa", "##t"]
     grams:  [(0,1), (1,2), (2,4)]

  For a `max_ngram_size` of three, possible outputs masks include:
    1-grams: (0,1), (1,2), (2,4)
    2-grams: (0,2), (1,4)
    3-grams; (0,4)

  Output masks will not overlap and contain less than `max_masked_tokens` total
  tokens.  E.g., for the example above with `max_masked_tokens` as three,
  valid outputs are,
       [(0,1), (1,2)]  # "the", "red" covering two tokens
       [(1,2), (2,4)]  # "red", "boa", "##t" covering three tokens

  The length of the selected n-gram follows a zipf weighting to
  favor shorter n-gram sizes (weight(1)=1, weight(2)=1/2, weight(3)=1/3, ...).

  Args:
    grams: List of one-grams.
    max_ngram_size: Maximum number of contiguous one-grams combined to create
      an n-gram.
    max_masked_tokens: Maximum total number of tokens to be masked.
    rng: `random.Random` generator.

  Returns:
    A list of n-grams to be used as masks.
  """
  if not grams:
    return None

  grams = sorted(grams)
  num_tokens = grams[-1].end

  # Ensure our grams are valid (i.e., they don't overlap).
  for a, b in _window(grams, 2):
    if a.end > b.begin:
      raise ValueError("overlapping grams: {}".format(grams))

  # Build map from n-gram length to list of n-grams.
  ngrams = {i: [] for i in range(1, max_ngram_size+1)}
  for gram_size in range(1, max_ngram_size+1):
    for g in _window(grams, gram_size):
      if _contiguous(g):
        # Add an n-gram which spans these one-grams.
        ngrams[gram_size].append(_Gram(g[0].begin, g[-1].end))

  # Shuffle each list of n-grams.
  for v in ngrams.values():
    rng.shuffle(v)

  # Create the weighting for n-gram length selection.
  # Stored cummulatively for `random.choices` below.
  cummulative_weights = list(
      itertools.accumulate([1./n for n in range(1, max_ngram_size+1)]))

  output_ngrams = []
  # Keep a bitmask of which tokens have been masked.
  masked_tokens = [False] * num_tokens
  # Loop until we have enough masked tokens or there are no more candidate
  # n-grams of any length.
  # Each code path should ensure one or more elements from `ngrams` are removed
  # to guarentee this loop terminates.
  while (sum(masked_tokens) < max_masked_tokens and
         sum(len(s) for s in ngrams.values())):
    # Pick an n-gram size based on our weights.
    sz = random.choices(range(1, max_ngram_size+1),
                        cum_weights=cummulative_weights)[0]

    # Ensure this size doesn't result in too many masked tokens.
    # E.g., a two-gram contains _at least_ two tokens.
    if sum(masked_tokens) + sz > max_masked_tokens:
      # All n-grams of this length are too long and can be removed from
      # consideration.
      ngrams[sz].clear()
      continue

    # All of the n-grams of this size have been used.
    if not ngrams[sz]:
      continue

    # Choose a random n-gram of the given size.
    gram = ngrams[sz].pop()
    num_gram_tokens = gram.end-gram.begin

    # Check if this would add too many tokens.
    if num_gram_tokens + sum(masked_tokens) > max_masked_tokens:
      continue

    # Check if any of the tokens in this gram have already been masked.
    if sum(masked_tokens[gram.begin:gram.end]):
      continue

    # Found a usable n-gram!  Mark its tokens as masked and add it to return.
    masked_tokens[gram.begin:gram.end] = [True] * (gram.end-gram.begin)
    output_ngrams.append(gram)
  return output_ngrams


def _wordpieces_to_grams(tokens):
  """Reconstitue grams (words) from `tokens`.

  E.g.,
     tokens: ['[CLS]', 'That', 'lit', '##tle', 'blue', 'tru', '##ck', '[SEP]']
      grams: [          [1,2), [2,         4),  [4,5) , [5,       6)]

  Args:
    tokens: list of wordpieces
  Returns:
    List of _Grams representing spans of whole words
    (without "[CLS]" and "[SEP]").
  """
  grams = []
  gram_start_pos = None
  for i, token in enumerate(tokens):
    if gram_start_pos is not None and token.startswith("##"):
      continue
    if gram_start_pos is not None:
      grams.append(_Gram(gram_start_pos, i))
    if token not in ["[CLS]", "[SEP]"]:
      gram_start_pos = i
    else:
      gram_start_pos = None
  if gram_start_pos is not None:
    grams.append(_Gram(gram_start_pos, len(tokens)))
  return grams


def create_masked_lm_predictions(tokens, masked_lm_prob,
                                 max_predictions_per_seq, vocab_words, rng,
                                 do_whole_word_mask,
                                 max_ngram_size=None):
  """Creates the predictions for the masked LM objective."""
  if do_whole_word_mask:
    grams = _wordpieces_to_grams(tokens)
  else:
    # Here we consider each token to be a word to allow for sub-word masking.
    if max_ngram_size:
      raise ValueError("cannot use ngram masking without whole word masking")
    grams = [_Gram(i, i+1) for i in range(0, len(tokens))
             if tokens[i] not in ["[CLS]", "[SEP]"]]

  num_to_predict = min(max_predictions_per_seq,
                       max(1, int(round(len(tokens) * masked_lm_prob))))
  # Generate masks.  If `max_ngram_size` in [0, None] it means we're doing
  # whole word masking or token level masking.  Both of these can be treated
  # as the `max_ngram_size=1` case.
  masked_grams = _masking_ngrams(grams, max_ngram_size or 1,
                                 num_to_predict, rng)
  masked_lms = []
  output_tokens = list(tokens)
  for gram in masked_grams:
    # 80% of the time, replace all n-gram tokens with [MASK]
    if rng.random() < 0.8:
      replacement_action = lambda idx: "[MASK]"
    else:
      # 10% of the time, keep all the original n-gram tokens.
      if rng.random() < 0.5:
        replacement_action = lambda idx: tokens[idx]
      # 10% of the time, replace each n-gram token with a random word.
      else:
        replacement_action = lambda idx: rng.choice(vocab_words)

    for idx in range(gram.begin, gram.end):
      output_tokens[idx] = replacement_action(idx)
      masked_lms.append(MaskedLmInstance(index=idx, label=tokens[idx]))

  assert len(masked_lms) <= num_to_predict
  masked_lms = sorted(masked_lms, key=lambda x: x.index)

  masked_lm_positions = []
  masked_lm_labels = []
  for p in masked_lms:
    masked_lm_positions.append(p.index)
    masked_lm_labels.append(p.label)

  return (output_tokens, masked_lm_positions, masked_lm_labels)


def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng):
  """Truncates a pair of sequences to a maximum sequence length."""
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_num_tokens:
      break

    trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
    assert len(trunc_tokens) >= 1

    # We want to sometimes truncate from the front and sometimes from the
    # back to add more randomness and avoid biases.
    if rng.random() < 0.5:
      del trunc_tokens[0]
    else:
      trunc_tokens.pop()


def main(_):
  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

  input_files = []
  for input_pattern in FLAGS.input_file.split(","):
    input_files.extend(tf.io.gfile.glob(input_pattern))

  logging.info("*** Reading from input files ***")
  for input_file in input_files:
    logging.info("  %s", input_file)

  rng = random.Random(FLAGS.random_seed)
  instances = create_training_instances(
      input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor,
      FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq,
      rng, FLAGS.do_whole_word_mask, FLAGS.max_ngram_size)

  output_files = FLAGS.output_file.split(",")
  logging.info("*** Writing to output files ***")
  for output_file in output_files:
    logging.info("  %s", output_file)

  write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length,
                                  FLAGS.max_predictions_per_seq, output_files,
                                  FLAGS.gzip_compress,
                                  FLAGS.use_v2_feature_names)


if __name__ == "__main__":
  flags.mark_flag_as_required("input_file")
  flags.mark_flag_as_required("output_file")
  flags.mark_flag_as_required("vocab_file")
  app.run(main)