File size: 7,243 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Keras-based gated feedforward layer."""
# pylint: disable=g-classes-have-attributes
from typing import Optional

import tensorflow as tf, tf_keras

from official.modeling import tf_utils


class BlockDiagFeedforward(tf_keras.layers.Layer):
  """Block diagonal feedforward layer.

  This layer replaces the weight matrix of the output_dense layer with a block
  diagonal matrix to save layer parameters and FLOPs. A linear mixing layer can
  be added optionally to improve layer expressibility.

  Args:
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout: Dropout probability for the output dropout.
    num_blocks: The number of blocks for the block diagonal matrix of the
      output_dense layer.
    apply_mixing: Apply linear mixing if True.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
  """

  def __init__(
      self,
      intermediate_size: int,
      intermediate_activation: str,
      dropout: float,
      num_blocks: int = 1,
      apply_mixing: bool = True,
      kernel_initializer: str = "glorot_uniform",
      bias_initializer: str = "zeros",
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      activity_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      kernel_constraint: Optional[tf_keras.constraints.Constraint] = None,
      bias_constraint: Optional[tf_keras.constraints.Constraint] = None,
      **kwargs):  # pylint: disable=g-doc-args
    super().__init__(**kwargs)
    self._intermediate_size = intermediate_size
    self._intermediate_activation = intermediate_activation
    self._dropout = dropout
    self._num_blocks = num_blocks
    self._apply_mixing = apply_mixing

    if intermediate_size % num_blocks != 0:
      raise ValueError("Intermediate_size (%d) isn't a multiple of num_blocks "
                       "(%d)." % (intermediate_size, num_blocks))

    self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf_keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf_keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf_keras.constraints.get(bias_constraint)

  def build(self, input_shape):
    hidden_size = input_shape.as_list()[-1]

    common_kwargs = dict(
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint)

    self._intermediate_dense = tf_keras.layers.EinsumDense(
        "abc,cde->abde",
        output_shape=(None, self._num_blocks,
                      self._intermediate_size // self._num_blocks),
        bias_axes="de",
        name="intermediate",
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
        **common_kwargs)

    policy = tf_keras.mixed_precision.global_policy()
    if policy.name == "mixed_bfloat16":
      # bfloat16 causes BERT with the LAMB optimizer to not converge
      # as well, so we use float32.
      policy = tf.float32
    self._intermediate_activation_layer = tf_keras.layers.Activation(
        self._intermediate_activation, dtype=policy)

    self._output_dense = tf_keras.layers.EinsumDense(
        "abde,deo->abdo",
        output_shape=(None, self._num_blocks, hidden_size // self._num_blocks),
        bias_axes="do",
        name="output",
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
        **common_kwargs)

    if self._apply_mixing:
      self._output_mixing = tf_keras.layers.EinsumDense(
          "abdo,de->abeo",
          output_shape=(None, self._num_blocks,
                        hidden_size // self._num_blocks),
          name="output_mixing",
          kernel_initializer=tf_utils.clone_initializer(
              self._kernel_initializer),
          bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
          **common_kwargs)
    self._output_reshape = tf_keras.layers.Reshape((-1, hidden_size))

    self._output_dropout = tf_keras.layers.Dropout(rate=self._dropout)

  def get_config(self):
    config = {
        "intermediate_size":
            self._intermediate_size,
        "intermediate_activation":
            self._intermediate_activation,
        "dropout":
            self._dropout,
        "num_blocks":
            self._num_blocks,
        "apply_mixing":
            self._apply_mixing,
        "kernel_initializer":
            tf_keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf_keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf_keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf_keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf_keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf_keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf_keras.constraints.serialize(self._bias_constraint)
    }
    base_config = super().get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    intermediate_output = self._intermediate_dense(inputs)
    intermediate_output = self._intermediate_activation_layer(
        intermediate_output)
    layer_output = self._output_dense(intermediate_output)
    if self._apply_mixing:
      layer_output = self._output_mixing(layer_output)
    layer_output = self._output_reshape(layer_output)
    layer_output = self._output_dropout(layer_output)

    return layer_output