File size: 7,322 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multi-channel Attention."""
# pylint: disable=g-classes-have-attributes

import math

import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.nlp.modeling.layers import masked_softmax


class VotingAttention(tf_keras.layers.Layer):
  """Voting Attention layer.

  Args:
    num_heads: The number of attention heads.
    head_size: Per-head hidden size.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
  """

  def __init__(self,
               num_heads,
               head_size,
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               **kwargs):
    super().__init__(**kwargs)
    self._num_heads = num_heads
    self._head_size = head_size
    self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf_keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
    self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf_keras.constraints.get(bias_constraint)

  def build(self, unused_input_shapes):
    common_kwargs = dict(
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint)
    self._query_dense = tf_keras.layers.EinsumDense(
        "BAE,ENH->BANH",
        output_shape=(None, self._num_heads, self._head_size),
        bias_axes="NH",
        name="query",
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
        **common_kwargs)
    self._key_dense = tf_keras.layers.EinsumDense(
        "BAE,ENH->BANH",
        output_shape=(None, self._num_heads, self._head_size),
        bias_axes="NH",
        name="key",
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
        **common_kwargs)
    super().build(unused_input_shapes)

  def call(self, encoder_outputs, doc_attention_mask):
    num_docs = tf_utils.get_shape_list(encoder_outputs, expected_rank=[4])[1]
    cls_embeddings = encoder_outputs[:, :, 0, :]
    key = self._key_dense(cls_embeddings)
    query = self._query_dense(cls_embeddings)
    doc_attention_mask = tf.cast(doc_attention_mask, tf.float32)

    key = tf.einsum("BANH,BA->BANH", key, doc_attention_mask)
    query = tf.einsum("BANH,BA->BANH", query, doc_attention_mask)
    attention_matrix = tf.einsum("BXNH,BYNH->BNXY", query, key)
    mask = tf.ones([num_docs, num_docs])
    mask = tf.linalg.set_diag(mask, tf.zeros(num_docs))
    attention_matrix = tf.einsum("BNXY,XY->BNXY", attention_matrix, mask)
    doc_attention_probs = tf.einsum("BNAY->BNA", attention_matrix)
    doc_attention_probs = tf.einsum("BNA->BA", doc_attention_probs)
    infadder = (1.0 - doc_attention_mask) * -100000.0
    return tf.nn.softmax(doc_attention_probs + infadder)


class MultiChannelAttention(tf_keras.layers.MultiHeadAttention):
  """Multi-channel Attention layer.

  Introduced in, [Generating Representative Headlines for News Stories
  ](https://arxiv.org/abs/2001.09386). Expects multiple cross-attention
  target sequences.

  Call args:
    query: Query `Tensor` of shape `[B, T, dim]`.
    value: Value `Tensor` of shape `[B, A, S, dim]`, where A denotes the
    context_attention_weights: Context weights of shape `[B, N, T, A]`, where N
      is the number of attention heads. Combines multi-channel sources
      context tensors according to the distribution among channels.
    key: Optional key `Tensor` of shape `[B, A, S, dim]`. If not given, will use
      `value` for both `key` and `value`, which is the most common case.
    attention_mask: A boolean mask of shape `[B, T, S]`, that prevents attention
      to certain positions.
  """

  def _build_attention(self, rank):
    super()._build_attention(rank)  # pytype: disable=attribute-error  # typed-keras
    self._masked_softmax = masked_softmax.MaskedSoftmax(mask_expansion_axes=[2])

  def call(self,
           query,
           value,
           key=None,
           context_attention_weights=None,
           attention_mask=None):
    if not self._built_from_signature:
      self._build_from_signature(query, value, key=key)
    if key is None:
      key = value

    # Scalar dimensions referenced here:
    #   B = batch size (number of stories)
    #   A = num_docs (number of docs)
    #   F = target sequence length
    #   T = source sequence length
    #   N = `num_attention_heads`
    #   H = `size_per_head`
    # `query_tensor` = [B, F, N ,H]
    query_tensor = self._query_dense(query)

    # `key_tensor` = [B, A, T, N, H]
    key_tensor = self._key_dense(key)

    # `value_tensor` = [B, A, T, N, H]
    value_tensor = self._value_dense(value)

    # Take the dot product between "query" and "key" to get the raw
    # attention scores.
    attention_scores = tf.einsum("BATNH,BFNH->BANFT", key_tensor, query_tensor)
    attention_scores = tf.multiply(attention_scores,
                                   1.0 / math.sqrt(float(self._key_dim)))

    # Normalize the attention scores to probabilities.
    # `attention_probs` = [B, A, N, F, T]
    attention_probs = self._masked_softmax(attention_scores, attention_mask)

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = self._dropout_layer(attention_probs)

    # `context_layer` = [B, F, N, H]
    context_layer = tf.einsum("BANFT,BATNH->BAFNH", attention_probs,
                              value_tensor)
    attention_output = tf.einsum("BNFA,BAFNH->BFNH", context_attention_weights,
                                 context_layer)
    attention_output = self._output_dense(attention_output)
    return attention_output