File size: 26,901 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Implement Seq2Seq Transformer model by TF official NLP library.

Model paper: https://arxiv.org/pdf/1706.03762.pdf
"""
import inspect
import math

import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.nlp.modeling import layers
from official.nlp.modeling.ops import beam_search

EOS_ID = 1


class Seq2SeqTransformer(tf_keras.Model):
  """Transformer model with Keras.

  Implemented as described in: https://arxiv.org/pdf/1706.03762.pdf

  The Transformer model consists of an encoder and decoder. The input is an int
  sequence (or a batch of sequences). The encoder produces a continuous
  representation, and the decoder uses the encoder output to generate
  probabilities for the output sequence.
  """

  def __init__(self,
               vocab_size=33708,
               embedding_width=512,
               dropout_rate=0.0,
               padded_decode=False,
               decode_max_length=None,
               extra_decode_length=0,
               beam_size=4,
               alpha=0.6,
               encoder_layer=None,
               decoder_layer=None,
               eos_id=EOS_ID,
               **kwargs):
    """Initialize layers to build Transformer model.

    Args:
      vocab_size: Size of vocabulary.
      embedding_width: Size of hidden layer for embedding.
      dropout_rate: Dropout probability.
      padded_decode: Whether to max_sequence_length padding is used. If set
        False, max_sequence_length padding is not used.
      decode_max_length: maximum number of steps to decode a sequence.
      extra_decode_length: Beam search will run extra steps to decode.
      beam_size: Number of beams for beam search
      alpha: The strength of length normalization for beam search.
      encoder_layer: An initialized encoder layer.
      decoder_layer: An initialized decoder layer.
      eos_id: Id of end of sentence token.
      **kwargs: other keyword arguments.
    """
    super().__init__(**kwargs)
    self._vocab_size = vocab_size
    self._embedding_width = embedding_width
    self._dropout_rate = dropout_rate
    self._padded_decode = padded_decode
    self._decode_max_length = decode_max_length
    self._extra_decode_length = extra_decode_length
    self._beam_size = beam_size
    self._alpha = alpha
    self._eos_id = eos_id
    self.embedding_lookup = layers.OnDeviceEmbedding(
        vocab_size=self._vocab_size,
        embedding_width=self._embedding_width,
        initializer=tf.random_normal_initializer(
            mean=0., stddev=self._embedding_width**-0.5),
        scale_factor=self._embedding_width**0.5)
    self.encoder_layer = encoder_layer
    self.decoder_layer = decoder_layer
    self.position_embedding = layers.RelativePositionEmbedding(
        hidden_size=self._embedding_width)
    self.encoder_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)
    self.decoder_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)

  def get_config(self):
    config = {
        "vocab_size": self._vocab_size,
        "hidden_size": self._embedding_width,
        "dropout_rate": self._dropout_rate,
        "padded_decode": self._padded_decode,
        "decode_max_length": self._decode_max_length,
        "eos_id": self._eos_id,
        "extra_decode_length": self._extra_decode_length,
        "beam_size": self._beam_size,
        "alpha": self._alpha,
        "encoder_layer": self.encoder_layer,
        "decoder_layer": self.decoder_layer,
    }
    base_config = super(Seq2SeqTransformer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def _embedding_linear(self, embedding_matrix, x):
    """Uses embeddings as linear transformation weights."""
    embedding_matrix = tf.cast(embedding_matrix, dtype=self.compute_dtype)
    x = tf.cast(x, dtype=self.compute_dtype)
    batch_size = tf.shape(x)[0]
    length = tf.shape(x)[1]
    hidden_size = tf.shape(x)[2]
    vocab_size = tf.shape(embedding_matrix)[0]

    x = tf.reshape(x, [-1, hidden_size])
    logits = tf.matmul(x, embedding_matrix, transpose_b=True)

    return tf.reshape(logits, [batch_size, length, vocab_size])

  def _parse_inputs(self, inputs):
    """Parses the `call` inputs and returns an uniformed output."""
    sources = inputs.get("inputs", None)
    input_mask = inputs.get("input_masks", None)
    embedded = inputs.get("embedded_inputs", None)

    if sources is None and embedded is not None:
      embedded_inputs = embedded
      boolean_mask = input_mask
      input_shape = tf_utils.get_shape_list(embedded, expected_rank=3)
      source_dtype = embedded.dtype
    elif sources is not None:
      embedded_inputs = self.embedding_lookup(sources)
      boolean_mask = tf.not_equal(sources, 0)
      input_shape = tf_utils.get_shape_list(sources, expected_rank=2)
      source_dtype = sources.dtype
    else:
      raise KeyError(
          "The call method expects either `inputs` or `embedded_inputs` and "
          "`input_masks` as input features.")

    return embedded_inputs, boolean_mask, input_shape, source_dtype

  def call(self, inputs):  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
    """Calculate target logits or inferred target sequences.

    Args:
      inputs: a dictionary of tensors.
        Feature `inputs` (optional): int tensor with shape
          `[batch_size, input_length]`.
        Feature `embedded_inputs` (optional): float tensor with shape
          `[batch_size, input_length, embedding_width]`.
        Feature `targets` (optional): None or int tensor with shape
          `[batch_size, target_length]`.
        Feature `input_masks` (optional): When providing the `embedded_inputs`,
          the dictionary must provide a boolean mask marking the filled time
          steps. The shape of the tensor is `[batch_size, input_length]`.
        Either `inputs` or `embedded_inputs` and `input_masks` must be present
        in the input dictionary. In the second case the projection of the
        integer tokens to the transformer embedding space is skipped and
        `input_masks` is expected to be present.

    Returns:
      If targets is defined, then return logits for each word in the target
      sequence, which is a float tensor with shape
      `(batch_size, target_length, vocab_size)`. If target is `None`, then
      generate output sequence one token at a time and
      returns a dictionary {
          outputs: `(batch_size, decoded_length)`
          scores: `(batch_size, 1)`}
      Even when `float16` is used, the output tensor(s) are always `float32`.

    Raises:
      NotImplementedError: If try to use padded decode method on CPU/GPUs.
    """
    # Prepare inputs to the layer stack by adding positional encodings and
    # applying dropout.
    targets = inputs.get("targets", None)
    (embedded_inputs, boolean_mask,
     input_shape, source_dtype) = self._parse_inputs(inputs)
    embedding_mask = tf.cast(boolean_mask, embedded_inputs.dtype)
    embedded_inputs *= tf.expand_dims(embedding_mask, -1)
    # Attention_mask generation.
    attention_mask = tf.cast(
        tf.reshape(boolean_mask, [input_shape[0], 1, input_shape[1]]),
        dtype=source_dtype)
    broadcast_ones = tf.ones(
        shape=[input_shape[0], input_shape[1], 1], dtype=source_dtype)
    attention_mask = broadcast_ones * attention_mask

    pos_encoding = self.position_embedding(embedded_inputs)
    pos_encoding = tf.cast(pos_encoding, embedded_inputs.dtype)
    encoder_inputs = embedded_inputs + pos_encoding

    encoder_inputs = self.encoder_dropout(encoder_inputs)

    encoder_outputs = self.encoder_layer(
        encoder_inputs, attention_mask=attention_mask)

    if targets is None:
      if self._padded_decode:
        max_decode_length = self._decode_max_length
      else:
        max_decode_length = self._decode_max_length or (
            tf.shape(encoder_outputs)[1] + self._extra_decode_length)
      symbols_to_logits_fn = self._get_symbols_to_logits_fn(max_decode_length)

      batch_size = tf.shape(encoder_outputs)[0]
      # Create initial set of IDs that will be passed to symbols_to_logits_fn.
      initial_ids = tf.zeros([batch_size], dtype=tf.int32)

      # Create cache storing decoder attention values for each layer.
      init_decode_length = (max_decode_length if self._padded_decode else 0)
      num_heads = self.decoder_layer.num_attention_heads
      dim_per_head = self._embedding_width // num_heads

      # Cache dtype needs to match beam_search dtype.
      # pylint: disable=g-complex-comprehension
      cache = {
          str(layer): {
              "key":
                  tf.zeros(
                      [batch_size, init_decode_length, num_heads, dim_per_head],
                      dtype=self.compute_dtype),
              "value":
                  tf.zeros(
                      [batch_size, init_decode_length, num_heads, dim_per_head],
                      dtype=self.compute_dtype)
          } for layer in range(self.decoder_layer.num_layers)
      }
      # pylint: enable=g-complex-comprehension

      # Add encoder output and attention bias to the cache.
      encoder_outputs = tf.cast(encoder_outputs, dtype=self.compute_dtype)
      attention_mask = tf.cast(
          tf.reshape(boolean_mask, [input_shape[0], 1, input_shape[1]]),
          dtype=self.compute_dtype)
      cache["encoder_outputs"] = encoder_outputs
      cache["encoder_decoder_attention_mask"] = attention_mask

      # Use beam search to find the top beam_size sequences and scores.
      decoded_ids, scores = beam_search.sequence_beam_search(
          symbols_to_logits_fn=symbols_to_logits_fn,
          initial_ids=initial_ids,
          initial_cache=cache,
          vocab_size=self._vocab_size,
          beam_size=self._beam_size,
          alpha=self._alpha,
          max_decode_length=max_decode_length,
          eos_id=self._eos_id,
          padded_decode=self._padded_decode,
          dtype=self.compute_dtype)

      # Get the top sequence for each batch element
      top_decoded_ids = decoded_ids[:, 0, 1:]
      top_scores = scores[:, 0]

      return {"outputs": top_decoded_ids, "scores": top_scores}

    # Shift targets to the right, and remove the last element
    targets = tf.pad(targets, [[0, 0], [1, 0]])[:, :-1]
    decoder_inputs = self.embedding_lookup(targets)
    length = tf.shape(decoder_inputs)[1]
    pos_encoding = self.position_embedding(decoder_inputs)
    pos_encoding = tf.cast(pos_encoding, embedded_inputs.dtype)
    decoder_inputs += pos_encoding

    decoder_inputs = self.decoder_dropout(decoder_inputs)

    decoder_shape = tf_utils.get_shape_list(decoder_inputs, expected_rank=3)
    batch_size = decoder_shape[0]
    decoder_length = decoder_shape[1]

    self_attention_mask = tf.linalg.band_part(tf.ones([length, length]), -1, 0)
    self_attention_mask = tf.reshape(self_attention_mask, [1, length, length])
    self_attention_mask = tf.tile(self_attention_mask, [batch_size, 1, 1])

    attention_mask = tf.cast(
        tf.expand_dims(boolean_mask, axis=1), dtype=source_dtype)
    attention_mask = tf.tile(attention_mask, [1, decoder_length, 1])

    outputs = self.decoder_layer(
        decoder_inputs,
        encoder_outputs,
        self_attention_mask=self_attention_mask,
        cross_attention_mask=attention_mask)
    logits = self._embedding_linear(self.embedding_lookup.embeddings, outputs)
    # Model outputs should be float32 to avoid numeric issues.
    # https://www.tensorflow.org/guide/mixed_precision#building_the_model
    logits = tf.cast(logits, tf.float32)
    return logits

  def _get_symbols_to_logits_fn(self, max_decode_length):
    """Returns a decoding function that calculates logits of the next tokens."""
    timing_signal = self.position_embedding(
        inputs=None, length=max_decode_length + 1)
    timing_signal = tf.cast(timing_signal, dtype=self.compute_dtype)
    decoder_self_attention_mask = tf.linalg.band_part(
        tf.ones([max_decode_length, max_decode_length],
                dtype=self.compute_dtype), -1, 0)
    decoder_self_attention_mask = tf.reshape(
        decoder_self_attention_mask, [1, max_decode_length, max_decode_length])

    def symbols_to_logits_fn(ids, i, cache):
      """Generate logits for next potential IDs.

      Args:
        ids: Current decoded sequences. int tensor with shape `(batch_size *
          beam_size, i + 1)`.
        i: Loop index.
        cache: Dictionary of values storing the encoder output, encoder-decoder
          attention bias, and previous decoder attention values.

      Returns:
        Tuple of
          (logits with shape `(batch_size * beam_size, vocab_size)`,
           updated cache values)
      """
      # Set decoder input to the last generated IDs
      decoder_input = ids[:, -1:]

      # Preprocess decoder input by getting embeddings and adding timing signal.
      decoder_input = self.embedding_lookup(decoder_input)
      decoder_input += timing_signal[i]
      if self._padded_decode:
        # indexing does not work on TPU.
        bias_shape = decoder_self_attention_mask.shape.as_list()
        self_attention_mask = tf.slice(decoder_self_attention_mask, [0, i, 0],
                                       [bias_shape[0], 1, bias_shape[2]])
      else:
        self_attention_mask = decoder_self_attention_mask[:, i:i + 1, :i + 1]
      decoder_shape = tf_utils.get_shape_list(decoder_input, expected_rank=3)
      batch_size = decoder_shape[0]
      decoder_length = decoder_shape[1]

      self_attention_mask = tf.tile(self_attention_mask, [batch_size, 1, 1])
      attention_mask = cache.get("encoder_decoder_attention_mask")
      attention_mask = tf.tile(attention_mask, [1, decoder_length, 1])

      decoder_outputs = self.decoder_layer(
          decoder_input,
          cache.get("encoder_outputs"),
          self_attention_mask=self_attention_mask,
          cross_attention_mask=attention_mask,
          cache=cache,
          decode_loop_step=i if self._padded_decode else None)

      decoder_outputs = tf.cast(decoder_outputs, dtype=self.compute_dtype)
      logits = self._embedding_linear(self.embedding_lookup.embeddings,
                                      decoder_outputs)
      logits = tf.squeeze(logits, axis=[1])
      return logits, cache

    return symbols_to_logits_fn


class TransformerEncoder(tf_keras.layers.Layer):
  """Transformer encoder.

  Transformer encoder is made up of N identical layers. Each layer is composed
  of the sublayers:
    1. Self-attention layer
    2. Feedforward network (which is 2 fully-connected layers)
  """

  def __init__(self,
               num_layers=6,
               num_attention_heads=8,
               intermediate_size=2048,
               activation="relu",
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
               use_bias=False,
               norm_first=True,
               norm_epsilon=1e-6,
               intermediate_dropout=0.0,
               **kwargs):
    """Initialize a Transformer encoder.

    Args:
      num_layers: Number of layers.
      num_attention_heads: Number of attention heads.
      intermediate_size: Size of the intermediate (Feedforward) layer.
      activation: Activation for the intermediate layer.
      dropout_rate: Dropout probability.
      attention_dropout_rate: Dropout probability for attention layers.
      use_bias: Whether to enable use_bias in attention layer. If set False,
        use_bias in attention layer is disabled.
      norm_first: Whether to normalize inputs to attention and intermediate
        dense layers. If set False, output of attention and intermediate dense
        layers is normalized.
      norm_epsilon: Epsilon value to initialize normalization layers.
      intermediate_dropout: Dropout probability for intermediate_dropout_layer.
      **kwargs: key word arguemnts passed to tf_keras.layers.Layer.
    """

    super(TransformerEncoder, self).__init__(**kwargs)
    self.num_layers = num_layers
    self.num_attention_heads = num_attention_heads
    self._intermediate_size = intermediate_size
    self._activation = activation
    self._dropout_rate = dropout_rate
    self._attention_dropout_rate = attention_dropout_rate
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
    self._intermediate_dropout = intermediate_dropout

  def build(self, input_shape):
    """Implements build() for the layer."""
    self.encoder_layers = []
    for i in range(self.num_layers):
      self.encoder_layers.append(
          layers.TransformerEncoderBlock(
              num_attention_heads=self.num_attention_heads,
              inner_dim=self._intermediate_size,
              inner_activation=self._activation,
              output_dropout=self._dropout_rate,
              attention_dropout=self._attention_dropout_rate,
              use_bias=self._use_bias,
              norm_first=self._norm_first,
              norm_epsilon=self._norm_epsilon,
              inner_dropout=self._intermediate_dropout,
              attention_initializer=attention_initializer(input_shape[2]),
              name=("layer_%d" % i)))
    self.output_normalization = tf_keras.layers.LayerNormalization(
        epsilon=self._norm_epsilon, dtype="float32")
    super(TransformerEncoder, self).build(input_shape)

  def get_config(self):
    config = {
        "num_layers": self.num_layers,
        "num_attention_heads": self.num_attention_heads,
        "intermediate_size": self._intermediate_size,
        "activation": self._activation,
        "dropout_rate": self._dropout_rate,
        "attention_dropout_rate": self._attention_dropout_rate,
        "use_bias": self._use_bias,
        "norm_first": self._norm_first,
        "norm_epsilon": self._norm_epsilon,
        "intermediate_dropout": self._intermediate_dropout
    }
    base_config = super(TransformerEncoder, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, encoder_inputs, attention_mask=None):
    """Return the output of the encoder.

    Args:
      encoder_inputs: A tensor with shape `(batch_size, input_length,
        hidden_size)`.
      attention_mask: A mask for the encoder self-attention layer with shape
        `(batch_size, input_length, input_length)`.

    Returns:
      Output of encoder which is a `float32` tensor with shape
        `(batch_size, input_length, hidden_size)`.
    """
    for layer_idx in range(self.num_layers):
      encoder_inputs = self.encoder_layers[layer_idx](
          [encoder_inputs, attention_mask])

    output_tensor = encoder_inputs
    output_tensor = self.output_normalization(output_tensor)

    return output_tensor


class TransformerDecoder(tf_keras.layers.Layer):
  """Transformer decoder.

  Like the encoder, the decoder is made up of N identical layers.
  Each layer is composed of the sublayers:
    1. Self-attention layer
    2. Multi-headed attention layer combining encoder outputs with results from
       the previous self-attention layer.
    3. Feedforward network (2 fully-connected layers)
  """

  def __init__(self,
               num_layers=6,
               num_attention_heads=8,
               intermediate_size=2048,
               activation="relu",
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
               use_bias=False,
               norm_first=True,
               norm_epsilon=1e-6,
               intermediate_dropout=0.0,
               self_attention_cls=None,
               cross_attention_cls=None,
               **kwargs):
    """Initialize a Transformer decoder.

    Args:
      num_layers: Number of layers.
      num_attention_heads: Number of attention heads.
      intermediate_size: Size of the intermediate (Feedforward) layer.
      activation: Activation for the intermediate layer.
      dropout_rate: Dropout probability.
      attention_dropout_rate: Dropout probability for attention layers.
      use_bias: Whether to enable use_bias in attention layer. If set `False`,
        use_bias in attention layer is disabled.
      norm_first: Whether to normalize inputs to attention and intermediate
        dense layers. If set `False`, output of attention and intermediate dense
        layers is normalized.
      norm_epsilon: Epsilon value to initialize normalization layers.
      intermediate_dropout: Dropout probability for intermediate_dropout_layer.
      self_attention_cls: An optional class to use for self attention
        or a function that provides the class per layer.
      cross_attention_cls: An optional class to use for cross attention
        or a function that provides the class per layer.
      **kwargs: key word arguemnts passed to tf_keras.layers.Layer.
    """
    super(TransformerDecoder, self).__init__(**kwargs)
    self.num_layers = num_layers
    self.num_attention_heads = num_attention_heads
    self._intermediate_size = intermediate_size
    self._activation = activation
    self._dropout_rate = dropout_rate
    self._attention_dropout_rate = attention_dropout_rate
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
    self._intermediate_dropout = intermediate_dropout
    self._self_attention_cls = self_attention_cls
    self._cross_attention_cls = cross_attention_cls

  def build(self, input_shape):
    """Implements build() for the layer."""

    def _select_attention_cls(attention_cls, index):
      cls = None
      if attention_cls is not None:
        cls = (
            attention_cls(index)
            if inspect.isfunction(attention_cls)
            else attention_cls
        )
      return cls

    self.decoder_layers = []
    for i in range(self.num_layers):
      self_attention_cls = _select_attention_cls(self._self_attention_cls, i)
      cross_attention_cls = _select_attention_cls(self._cross_attention_cls, i)
      self.decoder_layers.append(
          layers.TransformerDecoderBlock(
              num_attention_heads=self.num_attention_heads,
              intermediate_size=self._intermediate_size,
              intermediate_activation=self._activation,
              dropout_rate=self._dropout_rate,
              attention_dropout_rate=self._attention_dropout_rate,
              use_bias=self._use_bias,
              norm_first=self._norm_first,
              norm_epsilon=self._norm_epsilon,
              intermediate_dropout=self._intermediate_dropout,
              attention_initializer=attention_initializer(input_shape[2]),
              name=("layer_%d" % i),
              self_attention_cls=self_attention_cls,
              cross_attention_cls=cross_attention_cls))
    self.output_normalization = tf_keras.layers.LayerNormalization(
        epsilon=1e-6, dtype="float32")
    super(TransformerDecoder, self).build(input_shape)

  def get_config(self):
    config = {
        "num_layers": self.num_layers,
        "num_attention_heads": self.num_attention_heads,
        "intermediate_size": self._intermediate_size,
        "activation": self._activation,
        "dropout_rate": self._dropout_rate,
        "attention_dropout_rate": self._attention_dropout_rate,
        "use_bias": self._use_bias,
        "norm_first": self._norm_first,
        "norm_epsilon": self._norm_epsilon,
        "intermediate_dropout": self._intermediate_dropout,
        "self_attention_cls": self._self_attention_cls,
        "cross_attention_cls": self._cross_attention_cls,
    }
    base_config = super(TransformerDecoder, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self,
           target,
           memory,
           self_attention_mask=None,
           cross_attention_mask=None,
           cache=None,
           decode_loop_step=None,
           return_all_decoder_outputs=False):
    """Return the output of the decoder layer stacks.

    Args:
      target: A tensor with shape `(batch_size, target_length, hidden_size)`.
      memory: A tensor with shape `(batch_size, input_length, hidden_size)`.
      self_attention_mask: A tensor with shape `(batch_size, target_len,
        target_length)`, the mask for decoder self-attention layer.
      cross_attention_mask: A tensor with shape `(batch_size, target_length,
        input_length)` which is the mask for encoder-decoder attention layer.
      cache: (Used for fast decoding) A nested dictionary storing previous
        decoder self-attention values. The items are:
        {layer_n: {"k": A tensor with shape `(batch_size, i, key_channels)`,
                   "v": A tensor with shape `(batch_size, i, value_channels)`},
                     ...}
      decode_loop_step: An integer, the step number of the decoding loop. Used
        only for autoregressive inference on TPU.
      return_all_decoder_outputs: Return all decoder layer outputs.
        Note that the outputs are layer normed.
        This is useful when introducing per layer auxiliary loss.

    Returns:
      Output of decoder.
      float32 tensor with shape `(batch_size, target_length, hidden_size`).
    """

    output_tensor = target
    decoder_outputs = []
    for layer_idx in range(self.num_layers):
      transformer_inputs = [
          output_tensor, memory, cross_attention_mask, self_attention_mask
      ]
      # Gets the cache for decoding.
      if cache is None:
        output_tensor, _ = self.decoder_layers[layer_idx](transformer_inputs)
      else:
        cache_layer_idx = str(layer_idx)
        output_tensor, cache[cache_layer_idx] = self.decoder_layers[layer_idx](
            transformer_inputs,
            cache=cache[cache_layer_idx],
            decode_loop_step=decode_loop_step)
      if return_all_decoder_outputs:
        decoder_outputs.append(self.output_normalization(output_tensor))

    if return_all_decoder_outputs:
      return decoder_outputs
    else:
      return self.output_normalization(output_tensor)


def attention_initializer(hidden_size):
  """Initializer for attention layers in Seq2SeqTransformer."""
  hidden_size = int(hidden_size)
  limit = math.sqrt(6.0 / (hidden_size + hidden_size))
  return tf_keras.initializers.RandomUniform(minval=-limit, maxval=limit)