Spaces:
Runtime error
Runtime error
File size: 7,030 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for label_mean."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.recommendation.uplift import keras_test_case
from official.recommendation.uplift import types
from official.recommendation.uplift.metrics import label_mean
class LabelMeanTest(keras_test_case.KerasTestCase, parameterized.TestCase):
def _get_y_pred(
self, is_treatment: tf.Tensor
) -> types.TwoTowerTrainingOutputs:
# All tensors except the is_treatment tensor is distracting from the
# testing logic.
return types.TwoTowerTrainingOutputs(
shared_embedding=tf.ones_like(is_treatment),
control_predictions=tf.ones_like(is_treatment),
treatment_predictions=tf.ones_like(is_treatment),
uplift=tf.ones_like(is_treatment),
control_logits=tf.ones_like(is_treatment),
treatment_logits=tf.ones_like(is_treatment),
true_logits=tf.ones_like(is_treatment),
is_treatment=is_treatment,
)
@parameterized.named_parameters(
{
"testcase_name": "unweighted",
"y_true": tf.constant([0, 1, 5, 6]),
"is_treatment": tf.constant([[True], [False], [True], [False]]),
"sample_weight": None,
"expected_result": {
"label/mean": 3.0,
"label/mean/control": 3.5,
"label/mean/treatment": 2.5,
},
},
{
"testcase_name": "weighted",
"y_true": tf.constant([0, 1, 5, 6, -7]),
"is_treatment": tf.constant(
[[True], [False], [True], [True], [False]]
),
"sample_weight": tf.constant([0.5, 0.5, 0, 0.7, 1.8]),
"expected_result": {
"label/mean": np.average(
np.array([0, 1, 5, 6, -7]),
weights=np.array([0.5, 0.5, 0, 0.7, 1.8]),
),
"label/mean/control": np.average(
np.array([1, -7]), weights=np.array([0.5, 1.8])
),
"label/mean/treatment": np.average(
np.array([0, 5, 6]), weights=np.array([0.5, 0, 0.7])
),
},
},
{
"testcase_name": "only_control",
"y_true": tf.constant([[0], [1], [5]]),
"is_treatment": tf.constant([[False], [False], [False]]),
"sample_weight": tf.constant([1, 0, 1]),
"expected_result": {
"label/mean": 2.5,
"label/mean/control": 2.5,
"label/mean/treatment": 0.0,
},
},
{
"testcase_name": "only_treatment",
"y_true": tf.constant([[0], [1], [5]]),
"is_treatment": tf.constant([[True], [True], [True]]),
"sample_weight": tf.constant([0, 1, 1]),
"expected_result": {
"label/mean": 3.0,
"label/mean/control": 0.0,
"label/mean/treatment": 3.0,
},
},
{
"testcase_name": "one_entry",
"y_true": tf.constant([2.5]),
"is_treatment": tf.constant([True]),
"sample_weight": tf.constant([1]),
"expected_result": {
"label/mean": 2.5,
"label/mean/control": 0.0,
"label/mean/treatment": 2.5,
},
},
{
"testcase_name": "no_entry",
"y_true": tf.constant([]),
"is_treatment": tf.constant([], dtype=tf.bool),
"sample_weight": tf.constant([]),
"expected_result": {
"label/mean": 0.0,
"label/mean/control": 0.0,
"label/mean/treatment": 0.0,
},
},
)
def test_treatment_sliced_metric(
self, y_true, is_treatment, sample_weight, expected_result
):
metric = label_mean.LabelMean()
y_pred = self._get_y_pred(is_treatment)
metric(y_true, y_pred, sample_weight=sample_weight)
self.assertEqual(expected_result, metric.result())
def test_multiple_batches(self):
metric = label_mean.LabelMean(name="label")
metric.update_state(
y_true=tf.constant([[1], [2], [4]]),
y_pred=self._get_y_pred(tf.constant([[True], [True], [True]])),
sample_weight=None,
)
metric.update_state(
y_true=tf.constant([[-3], [0], [5]]),
y_pred=self._get_y_pred(tf.constant([[False], [False], [False]])),
sample_weight=None,
)
metric.update_state(
y_true=tf.constant([[0], [1], [-5]]),
y_pred=self._get_y_pred(tf.constant([[True], [False], [True]])),
sample_weight=tf.constant([0.3, 0.25, 0.7]),
)
expected_results = {
"label": np.average(
np.array([1, 2, 4, -3, 0, 5, 0, 1, -5]),
weights=np.array([1, 1, 1, 1, 1, 1, 0.3, 0.25, 0.7]),
),
"label/control": np.average(
np.array([-3, 0, 5, 1]), weights=np.array([1, 1, 1, 0.25])
),
"label/treatment": np.average(
np.array([1, 2, 4, 0, -5]), weights=np.array([1, 1, 1, 0.3, 0.7])
),
}
self.assertEqual(expected_results, metric.result())
def test_metric_states(self):
metric = label_mean.LabelMean()
expected_initial_result = {
"label/mean": 0.0,
"label/mean/control": 0.0,
"label/mean/treatment": 0.0,
}
self.assertEqual(expected_initial_result, metric.result())
metric(
y_true=tf.constant([1, 2, 6]),
y_pred=self._get_y_pred(tf.constant([[True], [False], [True]])),
)
self.assertEqual(
{
"label/mean": 3.0,
"label/mean/control": 2.0,
"label/mean/treatment": 3.5,
},
metric.result(),
)
metric.reset_states()
self.assertEqual(expected_initial_result, metric.result())
def test_metric_config(self):
metric = label_mean.LabelMean(name="test_name", dtype=tf.float16)
y_true = tf.constant([[1], [2], [3], [4]])
y_pred = self._get_y_pred(
is_treatment=tf.constant([[True], [False], [True], [False]]),
)
self.assertLayerConfigurable(layer=metric, y_true=y_true, y_pred=y_pred)
def test_invalid_prediction_tensor_type(self):
metric = label_mean.LabelMean()
with self.assertRaisesRegex(
TypeError, "y_pred must be of type `TwoTowerTrainingOutputs`"
):
metric.update_state(y_true=tf.ones((3, 1)), y_pred=tf.ones((3, 1)))
if __name__ == "__main__":
tf.test.main()
|