File size: 7,358 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for uplift_mean."""

from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.recommendation.uplift import keras_test_case
from official.recommendation.uplift import types
from official.recommendation.uplift.metrics import uplift_mean


class UpliftMeanTest(keras_test_case.KerasTestCase, parameterized.TestCase):

  def _get_y_pred(
      self, uplift: tf.Tensor, is_treatment: tf.Tensor
  ) -> types.TwoTowerTrainingOutputs:
    # Only the uplift and is_treatment tensors are required for testing.
    return types.TwoTowerTrainingOutputs(
        shared_embedding=tf.ones_like(is_treatment),
        control_predictions=tf.ones_like(is_treatment),
        treatment_predictions=tf.ones_like(is_treatment),
        uplift=uplift,
        control_logits=tf.ones_like(is_treatment),
        treatment_logits=tf.ones_like(is_treatment),
        true_logits=tf.ones_like(is_treatment),
        is_treatment=is_treatment,
    )

  @parameterized.named_parameters(
      {
          "testcase_name": "unweighted",
          "uplift": tf.constant([0, 1, 5, 6]),
          "is_treatment": tf.constant([[True], [False], [True], [False]]),
          "sample_weight": None,
          "expected_result": {
              "uplift/mean": 3.0,
              "uplift/mean/control": 3.5,
              "uplift/mean/treatment": 2.5,
          },
      },
      {
          "testcase_name": "weighted",
          "uplift": tf.constant([0, 1, 5, 6, -7]),
          "is_treatment": tf.constant(
              [[True], [False], [True], [True], [False]]
          ),
          "sample_weight": tf.constant([0.5, 0.5, 0, 0.7, 1.8]),
          "expected_result": {
              "uplift/mean": np.average(
                  [0, 1, 5, 6, -7], weights=[0.5, 0.5, 0, 0.7, 1.8]
              ),
              "uplift/mean/control": np.average([1, -7], weights=[0.5, 1.8]),
              "uplift/mean/treatment": np.average(
                  [0, 5, 6], weights=[0.5, 0, 0.7]
              ),
          },
      },
      {
          "testcase_name": "only_control",
          "uplift": tf.constant([[0], [1], [5]]),
          "is_treatment": tf.constant([[False], [False], [False]]),
          "sample_weight": tf.constant([1, 0, 1]),
          "expected_result": {
              "uplift/mean": 2.5,
              "uplift/mean/control": 2.5,
              "uplift/mean/treatment": 0.0,
          },
      },
      {
          "testcase_name": "only_treatment",
          "uplift": tf.constant([[0], [1], [5]]),
          "is_treatment": tf.constant([[True], [True], [True]]),
          "sample_weight": tf.constant([0, 1, 1]),
          "expected_result": {
              "uplift/mean": 3.0,
              "uplift/mean/control": 0.0,
              "uplift/mean/treatment": 3.0,
          },
      },
      {
          "testcase_name": "one_entry",
          "uplift": tf.constant([2.5]),
          "is_treatment": tf.constant([True]),
          "sample_weight": tf.constant([1]),
          "expected_result": {
              "uplift/mean": 2.5,
              "uplift/mean/control": 0.0,
              "uplift/mean/treatment": 2.5,
          },
      },
      {
          "testcase_name": "no_entry",
          "uplift": tf.constant([]),
          "is_treatment": tf.constant([], dtype=tf.bool),
          "sample_weight": tf.constant([]),
          "expected_result": {
              "uplift/mean": 0.0,
              "uplift/mean/control": 0.0,
              "uplift/mean/treatment": 0.0,
          },
      },
  )
  def test_metric_computes_sliced_uplift_means(
      self, uplift, is_treatment, sample_weight, expected_result
  ):
    metric = uplift_mean.UpliftMean()
    y_pred = self._get_y_pred(uplift=uplift, is_treatment=is_treatment)
    metric(
        y_true=tf.zeros_like(uplift), y_pred=y_pred, sample_weight=sample_weight
    )
    self.assertEqual(expected_result, metric.result())

  def test_multiple_update_batches_returns_aggregated_uplift_means(self):
    metric = uplift_mean.UpliftMean(name="uplift")

    metric.update_state(
        y_true=tf.zeros(3),
        y_pred=self._get_y_pred(
            uplift=tf.constant([[1], [2], [4]]),
            is_treatment=tf.constant([[True], [True], [True]]),
        ),
        sample_weight=None,
    )
    metric.update_state(
        y_true=tf.zeros(3),
        y_pred=self._get_y_pred(
            uplift=tf.constant([[-3], [0], [5]]),
            is_treatment=tf.constant([[False], [False], [False]]),
        ),
        sample_weight=None,
    )
    metric.update_state(
        y_true=tf.zeros(3),
        y_pred=self._get_y_pred(
            uplift=tf.constant([[0], [1], [-5]]),
            is_treatment=tf.constant([[True], [False], [True]]),
        ),
        sample_weight=tf.constant([0.3, 0.25, 0.7]),
    )

    expected_results = {
        "uplift": np.average(
            [1, 2, 4, -3, 0, 5, 0, 1, -5],
            weights=[1, 1, 1, 1, 1, 1, 0.3, 0.25, 0.7],
        ),
        "uplift/control": np.average([-3, 0, 5, 1], weights=[1, 1, 1, 0.25]),
        "uplift/treatment": np.average(
            [1, 2, 4, 0, -5], weights=[1, 1, 1, 0.3, 0.7]
        ),
    }
    self.assertEqual(expected_results, metric.result())

  def test_initial_and_reset_state_return_zero_uplift_means(self):
    metric = uplift_mean.UpliftMean()

    expected_initial_result = {
        "uplift/mean": 0.0,
        "uplift/mean/control": 0.0,
        "uplift/mean/treatment": 0.0,
    }
    self.assertEqual(expected_initial_result, metric.result())

    metric(
        y_true=tf.zeros(3),
        y_pred=self._get_y_pred(
            uplift=tf.constant([1, 2, 6]),
            is_treatment=tf.constant([[True], [False], [True]]),
        ),
    )
    self.assertEqual(
        {
            "uplift/mean": 3.0,
            "uplift/mean/control": 2.0,
            "uplift/mean/treatment": 3.5,
        },
        metric.result(),
    )

    metric.reset_states()
    self.assertEqual(expected_initial_result, metric.result())

  def test_metric_config_is_serializable(self):
    metric = uplift_mean.UpliftMean(name="test_name", dtype=tf.float16)
    y_pred = self._get_y_pred(
        uplift=tf.constant([[1], [2], [3], [4]]),
        is_treatment=tf.constant([[True], [False], [True], [False]]),
    )
    self.assertLayerConfigurable(
        layer=metric, y_true=tf.zeros(4), y_pred=y_pred, serializable=True
    )

  def test_invalid_prediction_tensor_type_raises_type_error(self):
    metric = uplift_mean.UpliftMean()

    with self.assertRaisesRegex(
        TypeError, "y_pred must be of type `TwoTowerTrainingOutputs`"
    ):
      metric.update_state(y_true=tf.ones((3, 1)), y_pred=tf.ones((3, 1)))


if __name__ == "__main__":
  tf.test.main()