File size: 38,389 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Spatial transform ops."""

from typing import Dict, Tuple

import numpy as np
import tensorflow as tf, tf_keras

from official.vision.ops.box_ops import bbox2mask

_EPSILON = 1e-8


def _feature_bilinear_interpolation(features: tf.Tensor, kernel_y: tf.Tensor,
                                    kernel_x: tf.Tensor) -> tf.Tensor:
  """Feature bilinear interpolation.

  The RoIAlign feature f can be computed by bilinear interpolation
  of four neighboring feature points f0, f1, f2, and f3.

  f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
                        [f10, f11]]
  f(y, x) = (hy*hx)f00 + (hy*lx)f01 + (ly*hx)f10 + (lx*ly)f11
  f(y, x) = w00*f00 + w01*f01 + w10*f10 + w11*f11
  kernel_y = [hy, ly]
  kernel_x = [hx, lx]

  Args:
    features: The features are in shape of [batch_size, num_boxes, output_size *
      2, output_size * 2, num_filters].
    kernel_y: Tensor of size [batch_size, boxes, output_size, 2, 1].
    kernel_x: Tensor of size [batch_size, boxes, output_size, 2, 1].

  Returns:
    A 5-D tensor representing feature crop of shape
    [batch_size, num_boxes, output_size, output_size, num_filters].

  """
  features_shape = tf.shape(features)
  batch_size, num_boxes, output_size, num_filters = (
      features_shape[0], features_shape[1], features_shape[2],
      features_shape[4])

  output_size = output_size // 2
  kernel_y = tf.reshape(kernel_y, [batch_size, num_boxes, output_size * 2, 1])
  kernel_x = tf.reshape(kernel_x, [batch_size, num_boxes, 1, output_size * 2])
  # Use implicit broadcast to generate the interpolation kernel. The
  # multiplier `4` is for avg pooling.
  interpolation_kernel = kernel_y * kernel_x * 4

  # Interpolate the gathered features with computed interpolation kernels.
  features *= tf.cast(
      tf.expand_dims(interpolation_kernel, axis=-1), dtype=features.dtype)
  features = tf.reshape(
      features,
      [batch_size * num_boxes, output_size * 2, output_size * 2, num_filters])
  features = tf.nn.avg_pool(features, [1, 2, 2, 1], [1, 2, 2, 1], 'VALID')
  features = tf.reshape(
      features, [batch_size, num_boxes, output_size, output_size, num_filters])
  return features


def _compute_grid_positions(
    boxes: tf.Tensor, boundaries: tf.Tensor, output_size: int,
    sample_offset: float) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]:
  """Computes the grid position w.r.t.

  the corresponding feature map.

  Args:
    boxes: a 3-D tensor of shape [batch_size, num_boxes, 4] encoding the
      information of each box w.r.t. the corresponding feature map.
      boxes[:, :, 0:2] are the grid position in (y, x) (float) of the top-left
      corner of each box. boxes[:, :, 2:4] are the box sizes in (h, w) (float)
        in terms of the number of pixels of the corresponding feature map size.
    boundaries: a 3-D tensor of shape [batch_size, num_boxes, 2] representing
      the boundary (in (y, x)) of the corresponding feature map for each box.
      Any resampled grid points that go beyond the bounary will be clipped.
    output_size: a scalar indicating the output crop size.
    sample_offset: a float number in [0, 1] indicates the subpixel sample offset
      from grid point.

  Returns:
    kernel_y: Tensor of size [batch_size, boxes, output_size, 2, 1].
    kernel_x: Tensor of size [batch_size, boxes, output_size, 2, 1].
    box_grid_y0y1: Tensor of size [batch_size, boxes, output_size, 2]
    box_grid_x0x1: Tensor of size [batch_size, boxes, output_size, 2]
  """
  boxes_shape = tf.shape(boxes)
  batch_size, num_boxes = boxes_shape[0], boxes_shape[1]
  if batch_size is None:
    batch_size = tf.shape(boxes)[0]
  box_grid_x = []
  box_grid_y = []
  for i in range(output_size):
    box_grid_x.append(boxes[:, :, 1] +
                      (i + sample_offset) * boxes[:, :, 3] / output_size)
    box_grid_y.append(boxes[:, :, 0] +
                      (i + sample_offset) * boxes[:, :, 2] / output_size)
  box_grid_x = tf.stack(box_grid_x, axis=2)
  box_grid_y = tf.stack(box_grid_y, axis=2)

  box_grid_y0 = tf.floor(box_grid_y)
  box_grid_x0 = tf.floor(box_grid_x)
  box_grid_x0 = tf.maximum(tf.cast(0., dtype=box_grid_x0.dtype), box_grid_x0)
  box_grid_y0 = tf.maximum(tf.cast(0., dtype=box_grid_y0.dtype), box_grid_y0)

  box_grid_x0 = tf.minimum(box_grid_x0, tf.expand_dims(boundaries[:, :, 1], -1))
  box_grid_x1 = tf.minimum(box_grid_x0 + 1,
                           tf.expand_dims(boundaries[:, :, 1], -1))
  box_grid_y0 = tf.minimum(box_grid_y0, tf.expand_dims(boundaries[:, :, 0], -1))
  box_grid_y1 = tf.minimum(box_grid_y0 + 1,
                           tf.expand_dims(boundaries[:, :, 0], -1))

  box_gridx0x1 = tf.stack([box_grid_x0, box_grid_x1], axis=-1)
  box_gridy0y1 = tf.stack([box_grid_y0, box_grid_y1], axis=-1)

  # The RoIAlign feature f can be computed by bilinear interpolation of four
  # neighboring feature points f0, f1, f2, and f3.
  # f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
  #                       [f10, f11]]
  # f(y, x) = (hy*hx)f00 + (hy*lx)f01 + (ly*hx)f10 + (lx*ly)f11
  # f(y, x) = w00*f00 + w01*f01 + w10*f10 + w11*f11
  ly = box_grid_y - box_grid_y0
  lx = box_grid_x - box_grid_x0
  hy = 1.0 - ly
  hx = 1.0 - lx
  kernel_y = tf.reshape(
      tf.stack([hy, ly], axis=3), [batch_size, num_boxes, output_size, 2, 1])
  kernel_x = tf.reshape(
      tf.stack([hx, lx], axis=3), [batch_size, num_boxes, output_size, 2, 1])
  return kernel_y, kernel_x, box_gridy0y1, box_gridx0x1


def multilevel_crop_and_resize(features: Dict[str, tf.Tensor],
                               boxes: tf.Tensor,
                               output_size: int = 7,
                               sample_offset: float = 0.5) -> tf.Tensor:
  """Crop and resize on multilevel feature pyramid.

  Generate the (output_size, output_size) set of pixels for each input box
  by first locating the box into the correct feature level, and then cropping
  and resizing it using the correspoding feature map of that level.

  Args:
    features: A dictionary with key as pyramid level and value as features. The
      features are in shape of [batch_size, height_l, width_l, num_filters].
    boxes: A 3-D Tensor of shape [batch_size, num_boxes, 4]. Each row represents
      a box with [y1, x1, y2, x2] in un-normalized coordinates.
    output_size: A scalar to indicate the output crop size.
    sample_offset: a float number in [0, 1] indicates the subpixel sample offset
      from grid point.

  Returns:
    A 5-D tensor representing feature crop of shape
    [batch_size, num_boxes, output_size, output_size, num_filters].
  """

  with tf.name_scope('multilevel_crop_and_resize'):
    levels = list(features.keys())
    min_level = int(min(levels))
    max_level = int(max(levels))
    features_shape = tf.shape(features[str(min_level)])
    batch_size, max_feature_height, max_feature_width, num_filters = (
        features_shape[0], features_shape[1], features_shape[2],
        features_shape[3])

    num_boxes = tf.shape(boxes)[1]

    # Stack feature pyramid into a features_all of shape
    # [batch_size, levels, height, width, num_filters].
    features_all = []
    feature_heights = []
    feature_widths = []
    for level in range(min_level, max_level + 1):
      shape = features[str(level)].get_shape().as_list()
      feature_heights.append(shape[1])
      feature_widths.append(shape[2])
      # Concat tensor of [batch_size, height_l * width_l, num_filters] for each
      # levels.
      features_all.append(
          tf.reshape(features[str(level)], [batch_size, -1, num_filters]))
    features_r2 = tf.reshape(tf.concat(features_all, 1), [-1, num_filters])

    # Calculate height_l * width_l for each level.
    level_dim_sizes = [
        feature_widths[i] * feature_heights[i]
        for i in range(len(feature_widths))
    ]
    # level_dim_offsets is accumulated sum of level_dim_size.
    level_dim_offsets = [0]
    for i in range(len(feature_widths) - 1):
      level_dim_offsets.append(level_dim_offsets[i] + level_dim_sizes[i])
    batch_dim_size = level_dim_offsets[-1] + level_dim_sizes[-1]
    level_dim_offsets = tf.constant(level_dim_offsets, tf.int32)
    height_dim_sizes = tf.constant(feature_widths, tf.int32)

    # Assigns boxes to the right level.
    box_width = boxes[:, :, 3] - boxes[:, :, 1]
    box_height = boxes[:, :, 2] - boxes[:, :, 0]
    areas_sqrt = tf.sqrt(
        tf.cast(box_height, tf.float32) * tf.cast(box_width, tf.float32))

    levels = tf.cast(
        tf.math.floordiv(
            tf.math.log(tf.math.divide_no_nan(areas_sqrt, 224.0)),
            tf.math.log(2.0)) + 4.0,
        dtype=tf.int32)
    # Maps levels between [min_level, max_level].
    levels = tf.minimum(max_level, tf.maximum(levels, min_level))

    # Projects box location and sizes to corresponding feature levels.
    scale_to_level = tf.cast(
        tf.pow(tf.constant(2.0), tf.cast(levels, tf.float32)),
        dtype=boxes.dtype)
    boxes /= tf.expand_dims(scale_to_level, axis=2)
    box_width /= scale_to_level
    box_height /= scale_to_level
    boxes = tf.concat([boxes[:, :, 0:2],
                       tf.expand_dims(box_height, -1),
                       tf.expand_dims(box_width, -1)], axis=-1)

    # Maps levels to [0, max_level-min_level].
    levels -= min_level
    level_strides = tf.pow([[2.0]], tf.cast(levels, tf.float32))
    boundary = tf.cast(
        tf.concat([
            tf.expand_dims(
                [[tf.cast(max_feature_height, tf.float32)]] / level_strides - 1,
                axis=-1),
            tf.expand_dims(
                [[tf.cast(max_feature_width, tf.float32)]] / level_strides - 1,
                axis=-1),
        ],
                  axis=-1), boxes.dtype)

    # Compute grid positions.
    kernel_y, kernel_x, box_gridy0y1, box_gridx0x1 = _compute_grid_positions(
        boxes, boundary, output_size, sample_offset)

    x_indices = tf.cast(
        tf.reshape(box_gridx0x1, [batch_size, num_boxes, output_size * 2]),
        dtype=tf.int32)
    y_indices = tf.cast(
        tf.reshape(box_gridy0y1, [batch_size, num_boxes, output_size * 2]),
        dtype=tf.int32)

    batch_size_offset = tf.tile(
        tf.reshape(
            tf.range(batch_size) * batch_dim_size, [batch_size, 1, 1, 1]),
        [1, num_boxes, output_size * 2, output_size * 2])
    # Get level offset for each box. Each box belongs to one level.
    levels_offset = tf.tile(
        tf.reshape(
            tf.gather(level_dim_offsets, levels),
            [batch_size, num_boxes, 1, 1]),
        [1, 1, output_size * 2, output_size * 2])
    y_indices_offset = tf.tile(
        tf.reshape(
            y_indices * tf.expand_dims(tf.gather(height_dim_sizes, levels), -1),
            [batch_size, num_boxes, output_size * 2, 1]),
        [1, 1, 1, output_size * 2])
    x_indices_offset = tf.tile(
        tf.reshape(x_indices, [batch_size, num_boxes, 1, output_size * 2]),
        [1, 1, output_size * 2, 1])
    indices = tf.reshape(
        batch_size_offset + levels_offset + y_indices_offset + x_indices_offset,
        [-1])

    # TODO(wangtao): replace tf.gather with tf.gather_nd and try to get similar
    # performance.
    features_per_box = tf.reshape(
        tf.gather(features_r2, indices),
        [batch_size, num_boxes, output_size * 2, output_size * 2, num_filters])

    # Bilinear interpolation.
    features_per_box = _feature_bilinear_interpolation(
        features_per_box, kernel_y, kernel_x)
    return features_per_box


def _selective_crop_and_resize(features: tf.Tensor,
                               boxes: tf.Tensor,
                               box_levels: tf.Tensor,
                               boundaries: tf.Tensor,
                               output_size: int = 7,
                               sample_offset: float = 0.5,
                               use_einsum_gather: bool = False) -> tf.Tensor:
  """Crop and resize boxes on a set of feature maps.

  Given multiple features maps indexed by different levels, and a set of boxes
  where each box is mapped to a certain level, it selectively crops and resizes
  boxes from the corresponding feature maps to generate the box features.

  We follow the ROIAlign technique (see https://arxiv.org/pdf/1703.06870.pdf,
  figure 3 for reference). Specifically, for each feature map, we select an
  (output_size, output_size) set of pixels corresponding to the box location,
  and then use bilinear interpolation to select the feature value for each
  pixel.

  For performance, we perform the gather and interpolation on all layers as a
  single operation. In this op the multi-level features are first stacked and
  gathered into [2*output_size, 2*output_size] feature points. Then bilinear
  interpolation is performed on the gathered feature points to generate
  [output_size, output_size] RoIAlign feature map.

  Here is the step-by-step algorithm:
    1. The multi-level features are gathered into a
       [batch_size, num_boxes, output_size*2, output_size*2, num_filters]
       Tensor. The Tensor contains four neighboring feature points for each
       vertex in the output grid.
    2. Compute the interpolation kernel of shape
       [batch_size, num_boxes, output_size*2, output_size*2]. The last 2 axis
       can be seen as stacking 2x2 interpolation kernels for all vertices in the
       output grid.
    3. Element-wise multiply the gathered features and interpolation kernel.
       Then apply 2x2 average pooling to reduce spatial dimension to
       output_size.

  Args:
    features: a 5-D tensor of shape [batch_size, num_levels, max_height,
      max_width, num_filters] where cropping and resizing are based.
    boxes: a 3-D tensor of shape [batch_size, num_boxes, 4] encoding the
      information of each box w.r.t. the corresponding feature map.
      boxes[:, :, 0:2] are the grid position in (y, x) (float) of the top-left
      corner of each box. boxes[:, :, 2:4] are the box sizes in (h, w) (float)
        in terms of the number of pixels of the corresponding feature map size.
    box_levels: a 3-D tensor of shape [batch_size, num_boxes, 1] representing
      the 0-based corresponding feature level index of each box.
    boundaries: a 3-D tensor of shape [batch_size, num_boxes, 2] representing
      the boundary (in (y, x)) of the corresponding feature map for each box.
      Any resampled grid points that go beyond the bounary will be clipped.
    output_size: a scalar indicating the output crop size.
    sample_offset: a float number in [0, 1] indicates the subpixel sample offset
      from grid point.
    use_einsum_gather: use einsum to replace gather or not. Replacing einsum
      with gather can improve performance when feature size is not large, einsum
      is friendly with model partition as well. Gather's performance is better
      when feature size is very large and there are multiple box levels.

  Returns:
    features_per_box: a 5-D tensor of shape
      [batch_size, num_boxes, output_size, output_size, num_filters]
      representing the cropped features.
  """
  (batch_size, num_levels, max_feature_height, max_feature_width,
   num_filters) = features.get_shape().as_list()
  if batch_size is None:
    batch_size = tf.shape(features)[0]
  _, num_boxes, _ = boxes.get_shape().as_list()

  kernel_y, kernel_x, box_gridy0y1, box_gridx0x1 = _compute_grid_positions(
      boxes, boundaries, output_size, sample_offset)
  x_indices = tf.cast(
      tf.reshape(box_gridx0x1, [batch_size, num_boxes, output_size * 2]),
      dtype=tf.int32)
  y_indices = tf.cast(
      tf.reshape(box_gridy0y1, [batch_size, num_boxes, output_size * 2]),
      dtype=tf.int32)

  if use_einsum_gather:
    # Blinear interpolation is done during the last two gathers:
    #        f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
    #                              [f10, f11]]
    #        [[f00, f01],
    #         [f10, f11]] = tf.einsum(tf.einsum(features, y_one_hot), x_one_hot)
    #       where [hy, ly] and [hx, lx] are the bilinear interpolation kernel.
    y_indices = tf.cast(
        tf.reshape(box_gridy0y1, [batch_size, num_boxes, output_size, 2]),
        dtype=tf.int32)
    x_indices = tf.cast(
        tf.reshape(box_gridx0x1, [batch_size, num_boxes, output_size, 2]),
        dtype=tf.int32)

    # shape is [batch_size, num_boxes, output_size, 2, height]
    grid_y_one_hot = tf.one_hot(
        tf.cast(y_indices, tf.int32), max_feature_height, dtype=kernel_y.dtype)
    # shape is [batch_size, num_boxes, output_size, 2, width]
    grid_x_one_hot = tf.one_hot(
        tf.cast(x_indices, tf.int32), max_feature_width, dtype=kernel_x.dtype)

    # shape is [batch_size, num_boxes, output_size, height]
    grid_y_weight = tf.reduce_sum(
        tf.multiply(grid_y_one_hot, kernel_y), axis=-2)
    # shape is [batch_size, num_boxes, output_size, width]
    grid_x_weight = tf.reduce_sum(
        tf.multiply(grid_x_one_hot, kernel_x), axis=-2)

    # Gather for y_axis.
    # shape is [batch_size, num_boxes, output_size, width, features]
    features_per_box = tf.einsum('bmhwf,bmoh->bmowf', features,
                                 tf.cast(grid_y_weight, features.dtype))
    # Gather for x_axis.
    # shape is [batch_size, num_boxes, output_size, output_size, features]
    features_per_box = tf.einsum('bmhwf,bmow->bmhof', features_per_box,
                                 tf.cast(grid_x_weight, features.dtype))
  else:
    height_dim_offset = max_feature_width
    level_dim_offset = max_feature_height * height_dim_offset
    batch_dim_offset = num_levels * level_dim_offset

    batch_size_offset = tf.tile(
        tf.reshape(
            tf.range(batch_size) * batch_dim_offset, [batch_size, 1, 1, 1]),
        [1, num_boxes, output_size * 2, output_size * 2])
    box_levels_offset = tf.tile(
        tf.reshape(box_levels * level_dim_offset,
                   [batch_size, num_boxes, 1, 1]),
        [1, 1, output_size * 2, output_size * 2])
    y_indices_offset = tf.tile(
        tf.reshape(y_indices * height_dim_offset,
                   [batch_size, num_boxes, output_size * 2, 1]),
        [1, 1, 1, output_size * 2])
    x_indices_offset = tf.tile(
        tf.reshape(x_indices, [batch_size, num_boxes, 1, output_size * 2]),
        [1, 1, output_size * 2, 1])

    indices = tf.reshape(
        batch_size_offset + box_levels_offset + y_indices_offset +
        x_indices_offset, [-1])

    features = tf.reshape(features, [-1, num_filters])
    # TODO(wangtao): replace tf.gather with tf.gather_nd and try to get similar
    # performance.
    features_per_box = tf.reshape(
        tf.gather(features, indices),
        [batch_size, num_boxes, output_size * 2, output_size * 2, num_filters])
    features_per_box = _feature_bilinear_interpolation(
        features_per_box, kernel_y, kernel_x)

  return features_per_box


def crop_mask_in_target_box(masks: tf.Tensor,
                            boxes: tf.Tensor,
                            target_boxes: tf.Tensor,
                            output_size: int,
                            sample_offset: float = 0.0,
                            use_einsum: bool = True) -> tf.Tensor:
  """Crop masks in target boxes.

  Args:
    masks: A tensor with a shape of [batch_size, num_masks, height, width].
    boxes: a float tensor representing box cooridnates that tightly enclose
      masks with a shape of [batch_size, num_masks, 4] in un-normalized
      coordinates. A box is represented by [ymin, xmin, ymax, xmax].
    target_boxes: a float tensor representing target box cooridnates for masks
      with a shape of [batch_size, num_masks, 4] in un-normalized coordinates. A
      box is represented by [ymin, xmin, ymax, xmax].
    output_size: A scalar to indicate the output crop size. It currently only
      supports to output a square shape outputs.
    sample_offset: a float number in [0, 1] indicates the subpixel sample offset
      from grid point.
    use_einsum: Use einsum to replace gather in selective_crop_and_resize.

  Returns:
    A 4-D tensor representing feature crop of shape
    [batch_size, num_boxes, output_size, output_size].
  """
  with tf.name_scope('crop_mask_in_target_box'):
    # Cast to float32, as the y_transform and other transform variables may
    # overflow in float16
    masks = tf.cast(masks, tf.float32)
    boxes = tf.cast(boxes, tf.float32)
    target_boxes = tf.cast(target_boxes, tf.float32)

    batch_size, num_masks, height, width = masks.get_shape().as_list()
    if batch_size is None:
      batch_size = tf.shape(masks)[0]
    masks = tf.reshape(masks, [batch_size * num_masks, height, width, 1])
    # Pad zeros on the boundary of masks.
    masks = tf.image.pad_to_bounding_box(masks, 2, 2, height + 4, width + 4)
    masks = tf.reshape(masks, [batch_size, num_masks, height+4, width+4, 1])

    # Projects target box locations and sizes to corresponding cropped
    # mask coordinates.
    gt_y_min, gt_x_min, gt_y_max, gt_x_max = tf.split(
        value=boxes, num_or_size_splits=4, axis=2)
    bb_y_min, bb_x_min, bb_y_max, bb_x_max = tf.split(
        value=target_boxes, num_or_size_splits=4, axis=2)
    y_transform = (bb_y_min - gt_y_min) * height / (
        gt_y_max - gt_y_min + _EPSILON) + 2
    x_transform = (bb_x_min - gt_x_min) * height / (
        gt_x_max - gt_x_min + _EPSILON) + 2
    h_transform = (bb_y_max - bb_y_min) * width / (
        gt_y_max - gt_y_min + _EPSILON)
    w_transform = (bb_x_max - bb_x_min) * width / (
        gt_x_max - gt_x_min + _EPSILON)

    boundaries = tf.concat(
        [tf.ones_like(y_transform) * ((height + 4) - 1),
         tf.ones_like(x_transform) * ((width + 4) - 1)],
        axis=-1)
    boundaries = tf.cast(boundaries, dtype=y_transform.dtype)

    # Reshape tensors to have the right shape for selective_crop_and_resize.
    trasnformed_boxes = tf.concat(
        [y_transform, x_transform, h_transform, w_transform], -1)
    levels = tf.tile(tf.reshape(tf.range(num_masks), [1, num_masks]),
                     [batch_size, 1])

    cropped_masks = _selective_crop_and_resize(
        masks,
        trasnformed_boxes,
        levels,
        boundaries,
        output_size,
        sample_offset=sample_offset,
        use_einsum_gather=use_einsum)
    cropped_masks = tf.squeeze(cropped_masks, axis=-1)

  return cropped_masks


def nearest_upsampling(data: tf.Tensor,
                       scale: int,
                       use_keras_layer: bool = False) -> tf.Tensor:
  """Nearest neighbor upsampling implementation.

  Args:
    data: A tensor with a shape of [batch, height_in, width_in, channels].
    scale: An integer multiple to scale resolution of input data.
    use_keras_layer: If True, use keras Upsampling2D layer.

  Returns:
    data_up: A tensor with a shape of
      [batch, height_in*scale, width_in*scale, channels]. Same dtype as input
      data.
  """
  if use_keras_layer:
    return tf_keras.layers.UpSampling2D(size=(scale, scale),
                                        interpolation='nearest')(data)
  with tf.name_scope('nearest_upsampling'):
    bs, _, _, c = data.get_shape().as_list()
    shape = tf.shape(input=data)
    h = shape[1]
    w = shape[2]
    bs = -1 if bs is None else bs
    # Uses reshape to quickly upsample the input.  The nearest pixel is selected
    # via tiling.
    data = tf.tile(
        tf.reshape(data, [bs, h, 1, w, 1, c]), [1, 1, scale, 1, scale, 1])
    return tf.reshape(data, [bs, h * scale, w * scale, c])


def _gather_rows_from_matrix(input_matrix: tf.Tensor,
                             row_indices: tf.Tensor) -> tf.Tensor:
  """Gather rows from the input matrix (2-D tensor).

  This operation is equivalent to tf.gather(input_matrix, row_indices), but is
  implemented in sparse matrix multiplication.

  Args:
    input_matrix: A 2-D tensor in shape (input_h, input_w) from which to gather
      values. The shape must be 2-D, since sparse matrix multiplication is
      currently only supported on 2-D matrices.
    row_indices: A 1-D int tensor in shape (output_h) which stored the row
      indices of the input.

  Returns:
    A tensor in shape (output_h, input_w) which stores the gathered rows.
  """
  input_matrix_shape = input_matrix.get_shape().as_list()
  if len(input_matrix_shape) != 2:
    raise ValueError(
        'Expected the input_matrix tensor (input_h, input_w) has rank == 2, '
        'was: %s' % input_matrix_shape)
  row_indices_shape = row_indices.get_shape().as_list()
  if len(row_indices_shape) != 1:
    raise ValueError(
        'Expected the row_indices tensor (output_h) has rank == 1, was: %s' %
        row_indices_shape)

  # (output_h, input_h)
  indices_one_hot = tf.one_hot(
      row_indices, depth=input_matrix_shape[0], dtype=input_matrix.dtype)
  # Matrix multiplication: (output_h, input_h) x (input_h, input_w)
  # (output_h, input_w)
  return tf.linalg.matmul(indices_one_hot, input_matrix, a_is_sparse=True)


def bilinear_resize_to_bbox(
    images: tf.Tensor, bbox: tf.Tensor, output_size: tf.Tensor
) -> tf.Tensor:
  """Bilinear resizes the images to fit into the bounding boxes in the output.

  Args:
    images: A tensor in shape (batch_size, input_h, input_w, ...) with arbitrary
      numbers of channel dimensions.
    bbox: A tensor in shape (batch_size, 4), representing the absolute
      coordinates (ymin, xmin, ymax, xmax) for each bounding box.
    output_size: The size of the output images in (output_h, output_w).

  Returns:
    A tensor in shape (batch_size, output_h, output_w, ...). The result has the
    same dtype as the input if it's float32, float16, bfloat16, otherwise the
    result is float32.
  """
  images_shape = images.get_shape().as_list()
  images_rank = len(images_shape)
  if images_rank < 3:
    raise ValueError(
        'Expected the input images (batch_size, height, width, ...) '
        'has rank >= 3, was: %s' % images_shape)
  bbox_shape = bbox.get_shape().as_list()
  if bbox_shape[-1] != 4:
    raise ValueError(
        'Expected the last dimension of `bbox` has size == 4, but the shape '
        'of `bbox` was: %s' % bbox_shape)

  rank_range = list(range(images_rank))
  extra_dims = images_shape[3:]
  extra_dims_perm = rank_range[3:]
  extra_dims_product = 1
  for d in extra_dims:
    extra_dims_product *= d

  input_h = tf.cast(tf.shape(images)[1], tf.float32)
  input_w = tf.cast(tf.shape(images)[2], tf.float32)
  output_h = output_size[0]
  output_w = output_size[1]

  bbox = tf.cast(bbox, tf.float32)
  # (batch_size, 1)
  bbox_ymin = bbox[:, 0:1]
  bbox_xmin = bbox[:, 1:2]
  bbox_ymax = bbox[:, 2:3]
  bbox_xmax = bbox[:, 3:4]
  bbox_h = bbox_ymax - bbox_ymin
  bbox_w = bbox_xmax - bbox_xmin
  scale_h = tf.math.divide_no_nan(input_h, bbox_h)
  scale_w = tf.math.divide_no_nan(input_w, bbox_w)

  # Generates the output grids.
  # (output_h)
  output_y_grid = tf.range(output_h, dtype=bbox_ymin.dtype)
  # (output_w)
  output_x_grid = tf.range(output_w, dtype=bbox_xmin.dtype)

  # Computes the input source positions (float) which map to the output grids
  # (integer).
  # Applies half pixel offset here to ensure the output is center-aligned to the
  # input.
  # TODO(b/245614786): support align_corners=True.
  # (batch_size, output_h)
  input_y_pos = tf.clip_by_value(
      (output_y_grid - bbox_ymin + 0.5) * scale_h - 0.5, 0.0, input_h - 1.0)
  # (batch_size, output_w)
  input_x_pos = tf.clip_by_value(
      (output_x_grid - bbox_xmin + 0.5) * scale_w - 0.5, 0.0, input_w - 1.0)

  # Gets the positions (integer) of the four nearest neighbors of the input
  # source position (float).
  # (y0, x0): left-top
  # (y0, x1): right-top
  # (y1, x0): left-bottom
  # (y1, x1): right-bottom
  # (batch_size, output_h)
  input_y0 = tf.cast(
      tf.clip_by_value(tf.floor(input_y_pos), 0.0, input_h - 2.0), tf.int32)
  input_y1 = input_y0 + 1
  # (batch_size, output_w)
  input_x0 = tf.cast(
      tf.clip_by_value(tf.floor(input_x_pos), 0.0, input_w - 2.0), tf.int32)
  input_x1 = input_x0 + 1

  # (batch_size, output_h)
  output_y_mask = (bbox_ymin <= output_y_grid) & (output_y_grid < bbox_ymax)
  # (batch_size, output_w)
  output_x_mask = (bbox_xmin <= output_x_grid) & (output_x_grid < bbox_xmax)

  # Masks the output pixels outside the bounding box by setting their input
  # neighbors to -1. This makes `tf.one_hot` operation produce all zeros at
  # these pixels, so as to accelerate the sparse matrix multiplication in
  # `_gather_rows_from_matrix`.
  # (batch_size, output_h)
  input_y0 = tf.where(output_y_mask, input_y0, -tf.ones_like(input_y0))
  input_y1 = tf.where(output_y_mask, input_y1, -tf.ones_like(input_y1))
  # (batch_size, output_w)
  input_x0 = tf.where(output_x_mask, input_x0, -tf.ones_like(input_x0))
  input_x1 = tf.where(output_x_mask, input_x1, -tf.ones_like(input_x1))

  input_h = tf.cast(input_h, tf.int32)
  input_w = tf.cast(input_w, tf.int32)
  if images.dtype not in {tf.float32, tf.bfloat16, tf.float16}:
    images = tf.cast(images, tf.float32)
  if images_rank > 3:
    # Reshapes the images since _gather_rows_from_matrix only takes 2-D tensor.
    # (batch_size, input_h, input_w * extra_dims_product)
    images = tf.reshape(images, [-1, input_h, input_w * extra_dims_product])

  # Fetches the rows from the input source images.
  # (batch_size, output_h, input_w * extra_dims_product)
  val_y0 = tf.map_fn(
      lambda x: _gather_rows_from_matrix(x[0], x[1]),
      elems=(images, input_y0),
      fn_output_signature=images.dtype,
      parallel_iterations=32,
  )
  val_y1 = tf.map_fn(
      lambda x: _gather_rows_from_matrix(x[0], x[1]),
      elems=(images, input_y1),
      fn_output_signature=images.dtype,
      parallel_iterations=32,
  )

  if images_rank > 3:
    new_shape = [-1, output_h, input_w] + extra_dims
    # (batch_size, output_h, input_w, ...)
    val_y0 = tf.reshape(val_y0, new_shape)
    val_y1 = tf.reshape(val_y1, new_shape)

  # Transposes the tensors for reusing _gather_rows_from_matrix later.
  new_perm = [0, 2, 1] + extra_dims_perm
  # (batch_size, input_w, output_h, ...)
  val_y0 = tf.transpose(val_y0, new_perm)
  val_y1 = tf.transpose(val_y1, new_perm)

  if images_rank > 3:
    new_shape = [-1, input_w, output_h * extra_dims_product]
    # (batch_size, input_w, output_h * extra_dims_product)
    val_y0 = tf.reshape(val_y0, new_shape)
    val_y1 = tf.reshape(val_y1, new_shape)

  # Fetches the pixels from the rows using the column indices.
  # val_00, val_01, val_10, val_11 store the pixels of the four nearest
  # neighbors of the input source position.
  # (batch_size, output_w, output_h * extra_dims_product)
  val_00 = tf.map_fn(
      lambda x: _gather_rows_from_matrix(x[0], x[1]),
      elems=(val_y0, input_x0),
      fn_output_signature=images.dtype,
      parallel_iterations=32,
  )
  val_01 = tf.map_fn(
      lambda x: _gather_rows_from_matrix(x[0], x[1]),
      elems=(val_y0, input_x1),
      fn_output_signature=images.dtype,
      parallel_iterations=32,
  )
  val_10 = tf.map_fn(
      lambda x: _gather_rows_from_matrix(x[0], x[1]),
      elems=(val_y1, input_x0),
      fn_output_signature=images.dtype,
      parallel_iterations=32,
  )
  val_11 = tf.map_fn(
      lambda x: _gather_rows_from_matrix(x[0], x[1]),
      elems=(val_y1, input_x1),
      fn_output_signature=images.dtype,
      parallel_iterations=32,
  )

  if images_rank > 3:
    new_shape = [-1, output_w, output_h] + extra_dims
    # (batch_size, output_w, output_h, ...)
    val_00 = tf.reshape(val_00, new_shape)
    val_01 = tf.reshape(val_01, new_shape)
    val_10 = tf.reshape(val_10, new_shape)
    val_11 = tf.reshape(val_11, new_shape)

  # (..., batch_size, output_h, output_w)
  new_perm = extra_dims_perm + [0, 2, 1]
  val_00 = tf.transpose(val_00, new_perm)
  val_01 = tf.transpose(val_01, new_perm)
  val_10 = tf.transpose(val_10, new_perm)
  val_11 = tf.transpose(val_11, new_perm)

  # (batch_size, output_height, 1)
  input_y_pos = tf.cast(input_y_pos[:, :, tf.newaxis], images.dtype)
  input_y0 = tf.cast(input_y0[:, :, tf.newaxis], images.dtype)
  input_y1 = tf.cast(input_y1[:, :, tf.newaxis], images.dtype)
  # (batch_size, 1, output_width)
  input_x_pos = tf.cast(input_x_pos[:, tf.newaxis, :], images.dtype)
  input_x0 = tf.cast(input_x0[:, tf.newaxis, :], images.dtype)
  input_x1 = tf.cast(input_x1[:, tf.newaxis, :], images.dtype)

  # Compute the weights of the four nearest neighbors for interpolation.
  # (batch_size, output_height, output_width)
  weight_00 = (input_y1 - input_y_pos) * (input_x1 - input_x_pos)
  weight_01 = (input_y1 - input_y_pos) * (input_x_pos - input_x0)
  weight_10 = (input_y_pos - input_y0) * (input_x1 - input_x_pos)
  weight_11 = (input_y_pos - input_y0) * (input_x_pos - input_x0)

  # (..., batch_size, output_height, output_width)
  output_images = (
      val_00 * weight_00 + val_01 * weight_01 + val_10 * weight_10 +
      val_11 * weight_11)

  # (batch_size, output_height, output_width, ...)
  return tf.transpose(output_images, np.roll(rank_range, -len(extra_dims)))


def bilinear_resize_with_crop_and_pad(images: tf.Tensor,
                                      rescale_size: tf.Tensor,
                                      crop_offset: tf.Tensor,
                                      crop_size: tf.Tensor,
                                      output_size: tf.Tensor) -> tf.Tensor:
  """Bilinear resizes the images, then crops and finally pads to output size.

  Args:
    images: A tensor in shape (batch_size, input_h, input_w, ...) with arbitrary
      numbers of channel dimensions.
    rescale_size: An int tensor in shape (batch_size, 2), representing the sizes
      of the rescaled images.
    crop_offset: An int tensor in shape (batch_size, 2), representing the
      left-top offset of the crop box. Applying negative offsets means adding
      extra margins at the left-top.
    crop_size: An int tensor in shape (batch_size, 2), representing the sizes of
      the cropped images.
    output_size: The size of the output image in (output_h, output_w).

  Returns:
    A tensor in shape (batch_size, output_h, output_w, ...). The result has the
    same dtype as the input if it's float32, float16, bfloat16, otherwise the
    result is float32.
  """
  images_shape = images.get_shape().as_list()
  images_rank = len(images_shape)
  if images_rank < 3:
    raise ValueError(
        'Expected the input images (batch_size, height, width, ...) '
        'has rank >= 3, was: %s' % images_shape)
  num_extra_dims = images_rank - 3

  # Rescales the images, applies the offset and pastes to the output canvas.

  # (batch_size, 2)
  ymin_xmin = -crop_offset
  # (batch_size, 2)
  ymax_xmax = ymin_xmin + tf.cast(rescale_size, ymin_xmin.dtype)
  # (batch_size, 4)
  rescale_bbox = tf.concat([ymin_xmin, ymax_xmax], axis=1)
  # (batch_size, output_height, output_width, ...)
  rescaled_padded_images = bilinear_resize_to_bbox(images, rescale_bbox,
                                                   output_size)

  # Masks out the pixels outside of the crop box.
  # (batch_size, 2)
  y0_x0 = tf.broadcast_to(
      tf.constant([[0, 0]], dtype=crop_size.dtype), tf.shape(crop_size))
  # (batch_size, 4)
  crop_bbox = tf.concat([y0_x0, crop_size], axis=1)
  # (batch_size, output_height, output_width, ...)
  crop_bbox_mask = bbox2mask(
      crop_bbox,
      image_height=output_size[0],
      image_width=output_size[1],
      dtype=rescaled_padded_images.dtype)[[...] + [tf.newaxis] * num_extra_dims]
  # (batch_size, output_height, output_width, ...)
  return rescaled_padded_images * crop_bbox_mask


def bilinear_resize_with_pad(
    images: tf.Tensor, rescale_size: tf.Tensor, output_size: tf.Tensor
) -> tf.Tensor:
  """Bilinear resizes the images, then pads to output size.

  Args:
    images: A tensor in shape (batch_size, input_h, input_w, ...) with arbitrary
      numbers of channel dimensions.
    rescale_size: An int tensor in shape (2,) or (batch_size, 2), representing
      the sizes of the rescaled images.
    output_size: The size of the output image in (output_h, output_w).

  Returns:
    A tensor in shape (batch_size, output_h, output_w, ...). The result has the
    same dtype as the input if it's float32, float16, bfloat16, otherwise the
    result is float32.
  """
  images_shape = images.get_shape().as_list()
  images_rank = len(images_shape)
  if images_rank < 3:
    raise ValueError(
        'Expected the input images (batch_size, height, width, ...) '
        'has rank >= 3, was: %s' % images_shape
    )
  batch_size = tf.shape(images)[0]
  rescale_size = tf.convert_to_tensor(rescale_size)
  if len(rescale_size.get_shape().as_list()) == 1:
    rescale_size = tf.broadcast_to(rescale_size, [batch_size, 2])

  # Rescales the images, applies the offset and pastes to the output canvas.

  # (batch_size, 2)
  ymin_xmin = tf.broadcast_to([0, 0], [batch_size, 2])
  # (batch_size, 2)
  ymax_xmax = tf.cast(ymin_xmin, rescale_size.dtype) + rescale_size
  # (batch_size, 4)
  rescale_bbox = tf.concat([ymin_xmin, ymax_xmax], axis=1)
  # (batch_size, output_height, output_width, ...)
  return bilinear_resize_to_bbox(images, rescale_bbox, output_size)


def bilinear_resize(images: tf.Tensor, output_size: tf.Tensor) -> tf.Tensor:
  """Bilinear resizes the images.

  Args:
    images: A tensor in shape (batch_size, input_h, input_w, ...) with arbitrary
      numbers of channel dimensions.
    output_size: The size of the output image in (output_h, output_w).

  Returns:
    A tensor in shape (batch_size, output_h, output_w, ...). The result has the
    same dtype as the input if it's float32, float16, bfloat16, otherwise the
    result is float32.
  """
  return bilinear_resize_with_pad(
      images, rescale_size=output_size, output_size=output_size
  )